Variability in Carbon Nanotube Transistors: Improving Device-to-Device Consistency

被引:110
作者
Franklin, Aaron D. [1 ]
Tulevski, George S. [1 ]
Han, Shu-Jen [1 ]
Shahrjerdi, Davood [1 ]
Cao, Qing [1 ]
Chen, Hong-Yu [2 ,3 ]
Wong, H. -S. Philip [2 ,3 ]
Haensch, Wilfried [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Ctr Integrated Syst, Stanford, CA 94305 USA
关键词
hysteresis; carbon nanotube transistors; threshold voltage; CNTFET; variability; FIELD-EFFECT TRANSISTORS; HYSTERESIS; TRANSPORT; PROGRESS; GATES;
D O I
10.1021/nn203516z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The large amount of hysteresis and threshold voltage variation in carbon nanotube transistors impedes their use in highly integrated digital applications. The origin of this variability is elucidated by employing a top-coated, hydrophobic monolayer to passivate bottom-gated devices. Compared to passivating only the supporting substrate, it is found that covering the nanotube channel proves highly effective and robust at improving device-to-device consistency-hysteresis and threshold voltage variation are reduced by an average of 84 and 53%, respectively. The effect of gate and drain-source bias on hysteresis is considered, showing strong dependence that must be accounted for when analyzing the effectiveness of a passivation layer. These results provide both key insight into the origin of variability in carbon nanotube transistors and a promising path for resolving this significant obstacle.
引用
收藏
页码:1109 / 1115
页数:7
相关论文
共 31 条
[1]   Sorting Single-Walled Carbon Nanotubes by Electronic Type Using Nonionic, Biocompatible Block Copolymers [J].
Antaris, Alexander L. ;
Seo, Jung-Woo T. ;
Green, Alexander A. ;
Hersam, Mark C. .
ACS NANO, 2010, 4 (08) :4725-4732
[2]   Carbon nanotubes for high-performance electronics - Progress and prospect [J].
Appenzeller, J. .
PROCEEDINGS OF THE IEEE, 2008, 96 (02) :201-211
[3]   Directed assembly of single-walled carbon nanotubes via drop-casting onto a UV-patterned photosensitive monolayer [J].
Bardecker, Julie A. ;
Afzali, Ali ;
Tulevski, George S. ;
Graham, Teresita ;
Hannon, James B. ;
Jen, Alex K. -Y. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (23) :7226-+
[4]   Externally assembled gate-all-around carbon nanotube field-effect transistor [J].
Chen, Zhihong ;
Farmer, Damon ;
Xu, Sheng ;
Gordon, Roy ;
Avouris, Phaedon ;
Appenzeller, Joerg .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (02) :183-185
[5]   Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization [J].
Estrada, David ;
Dutta, Sumit ;
Liao, Albert ;
Pop, Eric .
NANOTECHNOLOGY, 2010, 21 (08)
[6]  
Franklin AD, 2010, NAT NANOTECHNOL, V5, P858, DOI [10.1038/nnano.2010.220, 10.1038/NNANO.2010.220]
[7]   Toward surround gates on vertical single-walled carbon nanotube devices [J].
Franklin, Aaron D. ;
Sayer, Robert A. ;
Sands, Timothy D. ;
Fisher, Timothy S. ;
Janes, David B. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (02) :821-826
[8]   High-mobility nanotube transistor memory [J].
Fuhrer, MS ;
Kim, BM ;
Durkop, T ;
Brintlinger, T .
NANO LETTERS, 2002, 2 (07) :755-759
[9]   Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al2O3 for sensor applications [J].
Helbling, T. ;
Hierold, C. ;
Roman, C. ;
Durrer, L. ;
Mattmann, M. ;
Bright, V. M. .
NANOTECHNOLOGY, 2009, 20 (43)
[10]   Progress towards monodisperse single-walled carbon nanotubes [J].
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2008, 3 (07) :387-394