Variability in Carbon Nanotube Transistors: Improving Device-to-Device Consistency

被引:107
作者
Franklin, Aaron D. [1 ]
Tulevski, George S. [1 ]
Han, Shu-Jen [1 ]
Shahrjerdi, Davood [1 ]
Cao, Qing [1 ]
Chen, Hong-Yu [2 ,3 ]
Wong, H. -S. Philip [2 ,3 ]
Haensch, Wilfried [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Ctr Integrated Syst, Stanford, CA 94305 USA
关键词
hysteresis; carbon nanotube transistors; threshold voltage; CNTFET; variability; FIELD-EFFECT TRANSISTORS; HYSTERESIS; TRANSPORT; PROGRESS; GATES;
D O I
10.1021/nn203516z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The large amount of hysteresis and threshold voltage variation in carbon nanotube transistors impedes their use in highly integrated digital applications. The origin of this variability is elucidated by employing a top-coated, hydrophobic monolayer to passivate bottom-gated devices. Compared to passivating only the supporting substrate, it is found that covering the nanotube channel proves highly effective and robust at improving device-to-device consistency-hysteresis and threshold voltage variation are reduced by an average of 84 and 53%, respectively. The effect of gate and drain-source bias on hysteresis is considered, showing strong dependence that must be accounted for when analyzing the effectiveness of a passivation layer. These results provide both key insight into the origin of variability in carbon nanotube transistors and a promising path for resolving this significant obstacle.
引用
收藏
页码:1109 / 1115
页数:7
相关论文
共 31 条
  • [1] Sorting Single-Walled Carbon Nanotubes by Electronic Type Using Nonionic, Biocompatible Block Copolymers
    Antaris, Alexander L.
    Seo, Jung-Woo T.
    Green, Alexander A.
    Hersam, Mark C.
    [J]. ACS NANO, 2010, 4 (08) : 4725 - 4732
  • [2] Carbon nanotubes for high-performance electronics - Progress and prospect
    Appenzeller, J.
    [J]. PROCEEDINGS OF THE IEEE, 2008, 96 (02) : 201 - 211
  • [3] Directed assembly of single-walled carbon nanotubes via drop-casting onto a UV-patterned photosensitive monolayer
    Bardecker, Julie A.
    Afzali, Ali
    Tulevski, George S.
    Graham, Teresita
    Hannon, James B.
    Jen, Alex K. -Y.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (23) : 7226 - +
  • [4] Externally assembled gate-all-around carbon nanotube field-effect transistor
    Chen, Zhihong
    Farmer, Damon
    Xu, Sheng
    Gordon, Roy
    Avouris, Phaedon
    Appenzeller, Joerg
    [J]. IEEE ELECTRON DEVICE LETTERS, 2008, 29 (02) : 183 - 185
  • [5] Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization
    Estrada, David
    Dutta, Sumit
    Liao, Albert
    Pop, Eric
    [J]. NANOTECHNOLOGY, 2010, 21 (08)
  • [6] Franklin AD, 2010, NAT NANOTECHNOL, V5, P858, DOI [10.1038/nnano.2010.220, 10.1038/NNANO.2010.220]
  • [7] Toward surround gates on vertical single-walled carbon nanotube devices
    Franklin, Aaron D.
    Sayer, Robert A.
    Sands, Timothy D.
    Fisher, Timothy S.
    Janes, David B.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (02): : 821 - 826
  • [8] High-mobility nanotube transistor memory
    Fuhrer, MS
    Kim, BM
    Durkop, T
    Brintlinger, T
    [J]. NANO LETTERS, 2002, 2 (07) : 755 - 759
  • [9] Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al2O3 for sensor applications
    Helbling, T.
    Hierold, C.
    Roman, C.
    Durrer, L.
    Mattmann, M.
    Bright, V. M.
    [J]. NANOTECHNOLOGY, 2009, 20 (43)
  • [10] Progress towards monodisperse single-walled carbon nanotubes
    Hersam, Mark C.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (07) : 387 - 394