FINITE ELEMENT APPROXIMATION OF THE PARABOLIC FRACTIONAL OBSTACLE PROBLEM

被引:11
作者
Otarola, Enrique [1 ]
Salgado, Abner J. [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
obstacle problem; thin obstacles; free boundaries; finite elements; fractional diffusion; anisotropic elements;
D O I
10.1137/15M1029801
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a discretization technique for the parabolic fractional obstacle problem in bounded domains. The fractional Laplacian is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation posed on a semi-infinite cylinder, which recasts our problem as a quasi-stationary elliptic variational inequality with a dynamic boundary condition. The rapid decay of the solution suggests a truncation that is suitable for numerical approximation. We discretize the truncation with a backward Euler scheme in time, and, for space, we use first-degree tensor product finite elements. We present an error analysis based on different smoothness assumptions.
引用
收藏
页码:2619 / 2639
页数:21
相关论文
共 33 条
  • [1] Adams R.A., 1975, Sobolev Spaces
  • [2] [Anonymous], 2007, Lecture Notes of the Unione Matematica Italiana
  • [3] [Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
  • [4] [Anonymous], 1980, Pure and Applied Mathematics
  • [5] [Anonymous], 1980, TEUBNER TEXTE MATH
  • [6] [Anonymous], 2000, NONLINEAR POTENTIAL
  • [7] Atanackovic T.M., 2014, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes
  • [8] Birman S., 1980, SPEKTRALNAYA TEORIYA
  • [9] Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization
    Bueno-Orovio, Alfonso
    Kay, David
    Grau, Vicente
    Rodriguez, Blanca
    Burrage, Kevin
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (97)
  • [10] An extension problem related to the fractional Laplacian
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1245 - 1260