The KAM approach to the localization in "haarsch" quasi-periodic media

被引:2
作者
Chulaevsky, Victor [1 ]
机构
[1] Univ Reims, Dept Math Moulin Housse, BP 1039, F-51687 Reims 2, France
关键词
TIGHT-BINDING MODEL; ANDERSON LOCALIZATION; SCHRODINGER-OPERATORS; LARGE DISORDER; POTENTIALS;
D O I
10.1063/1.4995024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a Kolmogorov-Arnold-Moser type approach to the spectral analysis of lattice Schrodinger operators with quasi-periodic potentials. In the strong disorder regime, we prove uniform exponential localization and establish measure-theoretic bounds on the "resonant" sets which are substantially stronger than in prior studies on localization in deterministic disordered environments. Published by AIP Publishing.
引用
收藏
页数:18
相关论文
共 50 条
[41]   Light propagation in quasi-periodic Fibonacci waveguide arrays [J].
Lucic, N. M. ;
Savic, D. M. Jovic ;
Piper, A. ;
Grujic, D. Z. ;
Vasiljevic, J. M. ;
Pantelic, D. V. ;
Jelenkovic, B. M. ;
Timotijevic, D. V. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (07) :1510-1513
[42]   Critical behaviour of the quasi-periodic quantum Ising chain [J].
Crowley, P. J. D. ;
Laumann, C. R. ;
Chandran, A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (08)
[43]   Large coupling asymptotics for the entropy of quasi-periodic operators [J].
Ge, Lingrui ;
You, Jiangong .
SCIENCE CHINA-MATHEMATICS, 2020, 63 (09) :1745-1756
[44]   Quasi-periodic solutions for differential equations with an elliptic equilibrium under delayed perturbation [J].
He, Xiaolong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 380 :360-403
[45]   The Set of Smooth Quasi-periodic Schrodinger Cocycles with Positive Lyapunov Exponent is Not Open [J].
Wang, Yiqian ;
You, Jiangong .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 362 (03) :801-826
[46]   Investigation of reentrant localization transition in one-dimensional quasi-periodic lattice with long-range hopping [J].
Chang, Pei-Jie ;
Zeng, Qi-Bo ;
Pi, Jinghui ;
Ruan, Dong ;
Long, Gui-Lu .
NEW JOURNAL OF PHYSICS, 2025, 27 (05)
[47]   Method of Variations of Potential of Quasi-Periodic Schrödinger Equations [J].
Jackson Chan .
Geometric and Functional Analysis, 2008, 17 :1416-1478
[48]   Space Quasi-periodic Standing Waves for Nonlinear Schrodinger Equations [J].
Wang, W. -M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (02) :783-806
[49]   QUASI-PERIODIC SOLUTIONS FOR NON-AUTONOMOUS MKDV EQUATION [J].
Cui, Wenyan ;
Mi, Lufang ;
Yin, Li .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02) :313-337
[50]   Reducibility of one-dimensional quasi-periodic Schrodinger equations [J].
Geng, Jiansheng ;
Zhao, Zhiyan .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (03) :436-453