Large deviations for empirical entropies of g-measures

被引:11
作者
Chazottes, JR [1 ]
Gabrielli, D
机构
[1] CNRS, Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
[2] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
关键词
D O I
10.1088/0951-7715/18/6/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The entropy of an ergodic finite-alphabet process can be computed from a single typical sample path x(1)(n) using the entropy of the k-block empirical probability and letting k grow with n roughly like log n. We further assume that the, I distribution of the process is a g-measure. We prove large deviation principles for conditional, non-conditional and relative k(n)-block empirical entropies.
引用
收藏
页码:2545 / 2563
页数:19
相关论文
共 26 条
  • [1] [Anonymous], 1981, PROBABILITY MATH STA
  • [2] [Anonymous], 1998, GRAD TEXT M, DOI 10.1007/978-1-4612-0619-4_7
  • [3] BERGER N, 2003, PR0312334
  • [4] Bowen R., 1975, LECT NOTES MATH, V470
  • [5] NONUNIQUENESS IN G-FUNCTIONS
    BRAMSON, M
    KALIKOW, S
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1993, 84 (1-2) : 153 - 160
  • [6] A REMARK ON THE CONNECTION BETWEEN THE LARGE DEVIATION PRINCIPLE AND THE CENTRAL-LIMIT-THEOREM
    BRYC, W
    [J]. STATISTICS & PROBABILITY LETTERS, 1993, 18 (04) : 253 - 256
  • [7] Chazottes JR, 2005, DISCRETE CONT DYN-B, V5, P565
  • [8] Chazottes JR, 2000, J PHYS A-MATH GEN, V33, P675, DOI 10.1088/0305-4470/33/4/302
  • [9] CENTRAL LIMIT ASYMPTOTICS FOR SHIFTS OF FINITE-TYPE
    COELHO, ZQ
    PARRY, W
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1990, 69 (02) : 235 - 249
  • [10] Repetition times for Gibbsian sources
    Collet, P
    Galves, A
    Schmitt, B
    [J]. NONLINEARITY, 1999, 12 (04) : 1225 - 1237