The Characteristics and Evaluation of Future Droughts across China through the CMIP6 Multi-Model Ensemble

被引:42
|
作者
Ma, Zice [1 ]
Sun, Peng [1 ]
Zhang, Qiang [2 ,3 ]
Zou, Yifan [1 ]
Lv, Yinfeng [1 ]
Li, Hu [1 ]
Chen, Donghua [1 ]
机构
[1] Anhui Normal Univ, Sch Geog & Tourism, Wuhu 241002, Peoples R China
[2] Beijing Normal Univ, Acad Disaster Reduct & Emergency Management, Fac Geog Sci, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Key Lab Environm Change & Nat Disaster, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
drought assessment; drought characteristics; standardized precipitation evapotranspiration index; CMIP6; models; SSP scenarios; China; PEARL RIVER-BASIN; METEOROLOGICAL DROUGHTS; CLIMATE; PRECIPITATION; FLOOD; TEMPERATURE;
D O I
10.3390/rs14051097
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding historical and future drought patterns is crucial to acclimation and the mitigation of drought. The negative impact of China's droughts on the social economy has attracted attention; however, there is still no comprehensive or long-term monitoring pattern for future droughts. Here we evaluated the precipitation and temperature simulation capability of Coupled Model Intercomparison Project Phase 6 (CMIP6) and evaluated the temporal and spatial pattern of droughts during 1961-2099 across China. The results show that the multi-model ensemble mean (MME) is more representative of the observed precipitation and temperatures across China than the single climate model. China experienced an overall drying trend in the historical period. After 1991, the drought frequency (DF), drought duration (DD), and drought intensity (DI) in the northwest of the Inland River Basin and in the Yangtze River Basin increased significantly. Compared with the historical period, China will suffer more frequent drought events, although the DD and DI will be weakened under SSP1-2.6 and SSP2-4.5, while China will experience longer DD and more serious drought events under SSP3-7.0 and SSP5-8.5. The Hai River Basin and Huai River Basin are expected to have more serious drought trends in summer. Compared with historical periods, the drought trend will increase by 2.9-5.7 times and 1.1-4.2 times, respectively. The results can be used for decision making regarding future drought control.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Differences in multi-model ensembles of CMIP5 and CMIP6 projections for future droughts in South Korea
    Song, Young Hoon
    Shahi, Amsuddin
    Chung, Eun-Sung
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (05) : 2688 - 2716
  • [2] Projected Changes in Precipitation Based on the CMIP6 Optimal Multi-Model Ensemble in the Pearl River Basin, China
    He, Mengfei
    Chen, Yangbo
    Sun, Huaizhang
    Liu, Jun
    REMOTE SENSING, 2023, 15 (18)
  • [3] Evaluation of the CMIP6 multi-model ensemble for climate extreme indices
    Kim, Yeon-Hee
    Min, Seung-Ki
    Zhang, Xuebin
    Sillmann, Jana
    Sandstad, Marit
    WEATHER AND CLIMATE EXTREMES, 2020, 29
  • [4] Means and Extremes: Evaluation of a CMIP6 Multi-Model Ensemble in Reproducing Historical Climate Characteristics across Alberta, Canada
    Masud, Badrul
    Cui, Quan
    Ammar, Mohamed E.
    Bonsal, Barrie R.
    Islam, Zahidul
    Faramarzi, Monireh
    WATER, 2021, 13 (05)
  • [5] Evaluation and projection of marine heatwaves in the South China Sea: insights from CMIP6 multi-model ensemble
    Liu, Kai
    Xu, Kang
    Han, Tongxin
    Zhu, Congwen
    Li, Nina
    Guo, Anboyu
    Huang, Xiaolu
    ACTA OCEANOLOGICA SINICA, 2024, 43 (07) : 15 - 25
  • [6] Projecting future reference evapotranspiration in Iran based on CMIP6 multi-model ensemble
    Modaresi, Fereshteh
    Araghi, Alireza
    THEORETICAL AND APPLIED CLIMATOLOGY, 2023, 153 (1-2) : 101 - 112
  • [7] Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis
    Dutta, Riya
    Chanda, Kironmala
    Maity, Rajib
    RENEWABLE ENERGY, 2022, 188 : 819 - 829
  • [8] Evaluation and projection of wind energy density in China based on multi-model ensemble CMIP6 simulations
    Tao, Jian-Ning
    Hua, Wei
    Ma, Wen-Tong
    Lu, Qi-Feng
    THEORETICAL AND APPLIED CLIMATOLOGY, 2025, 156 (06)
  • [9] Multi-model ensemble of CMIP6 projections for future extreme climate changes in wheat production regions of China
    Shi, Zexu
    Xiao, Dengpan
    Bai, Huizi
    Chen, Xinmin
    Lu, Yang
    Ren, Dandan
    Yuan, Jinguo
    Zhang, Man
    CLIMATE DYNAMICS, 2024, 62 (06) : 5061 - 5081
  • [10] Evaluation and prediction of future droughts with multi-model ensembling of four models under CMIP6 scenarios over Iraq
    Abduljaleel, Yasir
    Chikabvumbwa, Sylvester Richard
    Ul Haq, Faraz
    THEORETICAL AND APPLIED CLIMATOLOGY, 2024, 155 (01) : 131 - 142