Raman Lidar Observations of Aerosol Optical Properties in 11 Cities from France to Siberia

被引:18
作者
Dieudonne, Elsa [1 ,2 ,3 ]
Chazette, Patrick [1 ,2 ]
Marnas, Fabien [1 ,2 ,4 ]
Totems, Julien [1 ,2 ]
Shang, Xiaoxia [1 ,2 ]
机构
[1] CNRS, LSCE, F-91191 Gif Sur Yvette, France
[2] CEA, F-91191 Gif Sur Yvette, France
[3] ULCO, LPCA, F-59140 Dunkerque, France
[4] Capgemini Technol Serv, F-31086 Toulouse, France
关键词
aerosol optical properties; Raman lidar; lidar ratio; particle depolarization ratio; Russia; PEARL RIVER DELTA; AIRBORNE LIDAR; INDIAN-OCEAN; TROPOSPHERIC AEROSOL; SPATIAL-DISTRIBUTION; AIR-POLLUTION; EXTINCTION; BACKSCATTER; NETWORK; CLIMATE;
D O I
10.3390/rs9100978
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In June 2013, a ground-based mobile lidar performed the similar to 10,000 km ride from Paris to Ulan-Ude, near Lake Baikal, profiling aerosol optical properties in the cities visited along the journey and allowing the first comparison of urban aerosols optical properties across Eurasia. The lidar instrument was equipped with N-2-Raman and depolarization channels, enabling the retrieval of the 355-nm extinction-to-backscatter ratio (also called Lidar Ratio (LR)) and the linear Particle Depolarization Ratio (PDR) in the urban planetary boundary or residual layer over 11 cities. The optical properties of pollution particles were found to be homogeneous all along the journey: no longitude dependence was observed for the LR, with most values falling within the 67-96 sr range. There exists only a slight increase of PDR between cities in Europe and Russia, which we attribute to a higher fraction of coarse terrigenous particles lifted from bad-tarmac roads and unvegetated terrains, which resulted, for instance, in a +1.7% increase between the megalopolises of Paris and Moscow. A few lower LR values (38 to 50 sr) were encountered above two medium size Siberian cities and in an isolated plume, suggesting that the relative weight of terrigenous aerosols in the mix may increase in smaller cities. Space-borne observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), retrieved during summer 2013 above the same Russian cities, confirmed the prevalence of aerosols classified as "polluted dust". Finally, we encountered one special feature in the Russian aerosol mix as we observed with good confidence an unusual aerosol layer displaying both a very high LR (96 sr) and a very high PDR (20%), even though both features make it difficult to identify the aerosol type.
引用
收藏
页数:29
相关论文
共 76 条
[1]   High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer [J].
Ansmann, A ;
Engelmann, R ;
Althausen, D ;
Wandinger, U ;
Hu, M ;
Zhang, YH ;
He, QS .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (13) :1-4
[2]   MEASUREMENT OF ATMOSPHERIC AEROSOL EXTINCTION PROFILES WITH A RAMAN LIDAR [J].
ANSMANN, A ;
RIEBESELL, M ;
WEITKAMP, C .
OPTICS LETTERS, 1990, 15 (13) :746-748
[3]   INDEPENDENT MEASUREMENT OF EXTINCTION AND BACKSCATTER PROFILES IN CIRRUS CLOUDS BY USING A COMBINED RAMAN ELASTIC-BACKSCATTER LIDAR [J].
ANSMANN, A ;
WANDINGER, U ;
RIEBESELL, M ;
WEITKAMP, C ;
MICHAELIS, W .
APPLIED OPTICS, 1992, 31 (33) :7113-7131
[4]   An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling [J].
Baars, Holger ;
Kanitz, Thomas ;
Engelmann, Ronny ;
Althausen, Dietrich ;
Heese, Birgit ;
Komppula, Mika ;
Preissler, Jana ;
Tesche, Matthias ;
Ansmann, Albert ;
Wandinger, Ulla ;
Lim, Jae-Hyun ;
Ahn, Joon Young ;
Stachlewska, Iwona S. ;
Amiridis, Vassilis ;
Marinou, Eleni ;
Seifert, Patric ;
Hofer, Julian ;
Skupin, Annett ;
Schneider, Florian ;
Bohlmann, Stephanie ;
Foth, Andreas ;
Bley, Sebastian ;
Pfuller, Anne ;
Giannakaki, Eleni ;
Lihavainen, Heikki ;
Viisanen, Yrjo ;
Hooda, Rakesh Kumar ;
Pereira, Sergio Nepomuceno ;
Bortoli, Daniele ;
Wagner, Frank ;
Mattis, Ina ;
Janicka, Lucja ;
Markowicz, Krzysztof M. ;
Achtert, Peggy ;
Artaxo, Paulo ;
Pauliquevis, Theotonio ;
Souza, Rodrigo A. F. ;
Sharma, Ved Prakesh ;
van Zyl, Pieter Gideon ;
Beukes, Johan Paul ;
Sun, Junying ;
Rohwer, Erich G. ;
Deng, Ruru ;
Mamouri, Rodanthi-Elisavet ;
Zamorano, Felix .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (08) :5111-5137
[5]   International Global Atmospheric Chemistry (IGAC) project's first aerosol characterization experiment (ACE 1): Overview [J].
Bates, TS ;
Huebert, BJ ;
Gras, JL ;
Griffiths, FB ;
Durkee, PA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D13) :16297-16318
[6]   Optical monitoring of characteristics of the stratospheric aerosol layer and total ozone content at the Siberian Lidar Station (Tomsk: 56° 30′ N; 85° E) (vol 36,pg 3024, 2015) [J].
Bazhenov, Oleg ;
Burlakov, Vladimir ;
Dolgii, Sergey ;
Nevzorov, Aleksey ;
Salnikova, Natalya .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (11) :3024-3032
[7]   Desert dust aerosol columnar properties over ocean and continental Africa from Lidar in-Space Technology Experiment (LITE) and Meteosat synergy [J].
Berthier, S. ;
Chazette, P. ;
Couvert, P. ;
Pelon, J. ;
Dulac, F. ;
Thieuleux, F. ;
Moulin, C. ;
Pain, T. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D21)
[8]   Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples [J].
Burton, S. P. ;
Ferrare, R. A. ;
Hostetler, C. A. ;
Hair, J. W. ;
Rogers, R. R. ;
Obland, M. D. ;
Butler, C. F. ;
Cook, A. L. ;
Harper, D. B. ;
Froyd, K. D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (01) :73-98
[9]   Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations [J].
Cattrall, C ;
Reagan, J ;
Thome, K ;
Dubovik, O .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) :1-13
[10]  
Center for International Earth Science Information Network (CIESIN), 2016, COL U GRIDD POP WORL