Intensity g(2) correlations in random fiber lasers: A random-matrix-theory approach

被引:5
作者
Raposo, Ernesto P. [1 ]
Gonzalez, Ivan R. R. [1 ,2 ]
Coronel, Edwin D. [3 ]
Macedo, Antonio M. S. [1 ]
Menezes, Leonardo de S. [3 ,4 ]
Kashyap, Raman [5 ]
Gomes, Anderson S. L. [3 ]
Kaiser, Robin [6 ]
机构
[1] Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Rural Pernambuco, Unidade Acad Belo Jardim, BR-55156580 Belo Jardim, PE, Brazil
[3] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
[4] Ludwig Maximilians Univ Munchen, Fak Phys, Nanoinst Munchen, Chair Hybrid Nanosyst, D-80539 Munich, Germany
[5] Polytech Montreal, Dept Elect Engn, Dept Engn Phys, Fabulas Lab, Montreal, PQ H3C 3A7, Canada
[6] Univ Cote dAzur, CNRS, INPHYNI, F-06560 Valbonne, France
关键词
PHOTON STATISTICS; LEVY STATISTICS; THRESHOLD; LIGHT;
D O I
10.1103/PhysRevA.105.L031502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an approach based on random matrix theory to calculate the temporal second-order intensity correlation function g((2))(t) of the radiation emitted by random lasers and random fiber lasers. The multimode character of these systems, with a relevant degree of disorder in the active medium, and a large number of random scattering centers substantially hinder the calculation of g((2))(t). Here, we apply in a photonic system the universal statistical properties of Ginibre's non-Hermitian random matrix ensemble to obtain g((2))(t). Excellent agreement is found with time-resolved measurements for several excitation powers of an erbium-based random fiber laser. We also discuss the extension of the random matrix approach to address the statistical properties of general disordered photonic systems with various Hamiltonian symmetries.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Glassy behavior of light [J].
Angelani, L ;
Conti, C ;
Ruocco, G ;
Zamponi, F .
PHYSICAL REVIEW LETTERS, 2006, 96 (06)
[2]  
[Anonymous], 2011, The Oxford Handbook of Random Matrix Theory
[3]   Complex spherical 2+4 spin glass: A model for nonlinear optics in random media [J].
Antenucci, F. ;
Crisanti, A. ;
Leuzzi, L. .
PHYSICAL REVIEW A, 2015, 91 (05)
[4]   General Phase Diagram of Multimodal Ordered and Disordered Lasers in Closed and Open Cavities [J].
Antenucci, F. ;
Conti, C. ;
Crisanti, A. ;
Leuzzi, L. .
PHYSICAL REVIEW LETTERS, 2015, 114 (04)
[5]   Large fluctuations at the lasing threshold of solid- and liquid-state dye lasers [J].
Basak, Supratim ;
Blanco, Alvaro ;
Lopez, Cefe .
SCIENTIFIC REPORTS, 2016, 6
[6]  
Baudouin Q, 2013, NAT PHYS, V9, P357, DOI [10.1038/NPHYS2614, 10.1038/nphys2614]
[7]   Photon statistics of random lasers with resonant feedback [J].
Cao, H ;
Ling, Y ;
Xu, JY ;
Cao, CQ ;
Kumar, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (20) :4524-4527
[8]   Diffusion in a random velocity field: Spectral properties of a non-hermitian Fokker-Planck operator [J].
Chalker, JT ;
Wang, ZJ .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1797-1800
[9]   Levy Statistics and the Glassy Behavior of Light in Random Fiber Lasers [J].
de Araujo, Cid B. ;
Gomes, Anderson S. L. ;
Raposo, Ernesto P. .
APPLIED SCIENCES-BASEL, 2017, 7 (07)
[10]   Random fiber laser [J].
de Matos, Christiano J. S. ;
Menezes, Leonardo de S. ;
Brito-Silva, Antonio M. ;
Gamez, M. A. Martinez ;
Gomes, Anderson S. L. ;
de Araujo, Cid B. .
PHYSICAL REVIEW LETTERS, 2007, 99 (15)