Local systems on P1-S for S a finite set

被引:60
作者
Belkale, P [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
vector bundle; Harder-Narasimhan filtration; representations of fundamental groups; Klyachko's theorem; local systems;
D O I
10.1023/A:1013195625868
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I give the necessary and sufficient conditions for the existence of Unitary local systems with prescribed local monodromies on bb P-1 - S where S is a finite set. This is used to give an algorithm to decide if a rigid local system on bb P-1 - S has finite global monodromy, thereby answering a question of N. Katz. The methods of this article (use of Harder-Narasimhan filtrations) are used to strengthen Klyachko's theorem on sums of Hermitian matrices. In the Appendix, I give a reformulation of Mehta-Seshadri theorem in the SU(n) setting.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 11 条
[1]  
Agnihotri S, 1998, MATH RES LETT, V5, P817
[2]  
Aluffi P., 1997, QUANTUM COHOMOLOGY M
[3]  
[Anonymous], 1978, Principles of algebraic geometry
[4]  
[Anonymous], 1996, ANN MATH STUD, V139
[5]   Quantum Schubert calculus [J].
Bertram, A .
ADVANCES IN MATHEMATICS, 1997, 128 (02) :289-305
[6]   A criterion for the existence of a parabolic stable bundle of rank two over the projective line [J].
Biswas, I .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (05) :523-533
[7]  
FULTON W, 1998, SEMINAIRE BOURBAKI
[8]  
Hartshorne R., 1977, ALGEBRAIC GEOM
[9]  
KLEIMAN SL, 1974, COMPOS MATH, V28, P287
[10]  
Klyachko A, 1988, SELECTA MATH, V4, P419, DOI [10.1007/s000290050037, DOI 10.1007/S000290050037]