On the construction of finite field elements of large order

被引:14
作者
Cheng, Q [1 ]
机构
[1] Univ Oklahoma, Sch Comp Sci, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
group order; algorithm;
D O I
10.1016/j.ffa.2005.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In numerous applications involving finite fields, we often need high-order elements. Ideally we should be able to obtain a primitive element for any finite field in reasonable time. However, if the prime factorization of the group order is unknown, we do not know how to achieve the goal. We thus turn our attentions to a less ambitious problem: constructing an element of provably high order. In this paper, we survey various algorithms that find an element of high order for general or special finite fields. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:358 / 366
页数:9
相关论文
共 19 条
[1]  
AGRAWAL M, 2002, ANN MATH
[2]  
[Anonymous], 1999, FINITE FIELDS THEORY
[3]   Comments on search procedures for primitive roots [J].
Bach, E .
MATHEMATICS OF COMPUTATION, 1997, 66 (220) :1719-1727
[4]  
BERNSTEIN D, 2003, PROVING PRIMALITY ES
[5]  
BERRIZBEITIA P, 2002, IN PRESS MATH COMP
[6]  
Cheng Q, 2003, LECT NOTES COMPUT SC, V2729, P338
[7]  
CHENG Q, 2004, ACM SIAM S DISCR ALG, P1123
[8]  
CHENG Q, 2004, P 2J ANN INT CRYPT C, P201
[9]  
Conflitti A, 2001, PROG COM SC, V20, P11
[10]   Elements of provable high orders in finite fields [J].
Gao, SH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (06) :1615-1623