Optimization with stochastic dominance constraints

被引:248
作者
Dentcheva, D
Ruszczynski, A
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[2] Rutgers State Univ, Dept Management Sci & Informat Syst, Piscataway, NJ 08854 USA
[3] RUTCOR, Piscataway, NJ 08854 USA
关键词
stochastic programming; stochastic dominance; partial orders; optimality conditions; duality;
D O I
10.1137/S1052623402420528
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce stochastic optimization problems involving stochastic dominance constraints. We develop necessary and sufficient conditions of optimality and duality theory for these models and show that the Lagrange multipliers corresponding to dominance constraints are concave nondecreasing utility functions. The models and results are illustrated on a portfolio optimization problem.
引用
收藏
页码:548 / 566
页数:19
相关论文
共 38 条
[1]  
BEALE EML, 1955, J ROY STAT SOC B, V17, P173
[2]  
Billingsley P., 1995, Probability and measure, VThird
[3]  
Birge J. R., 1997, INTRO STOCHASTIC PRO
[4]  
Bonnans JF., 2013, PERTURBATION ANAL OP
[5]   COST HORIZONS AND CERTAINTY EQUIVALENTS - AN APPROACH TO STOCHASTIC-PROGRAMMING OF HEATING OIL [J].
CHARNES, A ;
COOPER, WW ;
SYMONDS, GH .
MANAGEMENT SCIENCE, 1958, 4 (03) :235-263
[6]   LINEAR PROGRAMMING UNDER UNCERTAINTY [J].
Dantzig, George B. .
MANAGEMENT SCIENCE, 1955, 1 (3-4) :197-206
[7]  
DENTCHEVA D, UNPUB PORTFOLIA OPTI
[8]  
Dunford N., 1958, LINEAR OPERATORS
[9]  
Fishburn, 1964, DECISION VALUE THEOR
[10]  
Gol'shtein EG., 1971, Duality Theory in Mathematical Programming and Its Applications