The Perturbation Bound for the T-Drazin Inverse of Tensor and its Application

被引:5
作者
Cui, Ying-nan [1 ]
Ma, Hai-feng [1 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
基金
中国国家自然科学基金;
关键词
perturbation; T-Drazin inverse; T-product; tensor; FACTORIZATION; APPROXIMATIONS; MATRIX;
D O I
10.2298/FIL2105565C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, let A and B be n x n x p complex tensors and B = A + epsilon. Denote the T-Drazin inverse of A by A(D). We give a perturbation bound for parallel to B-D -A(D)parallel to/parallel to A(D)parallel to under condition (W). Considering the solution of singular tensor equation A* x = b, (b is an element of R(A(D))) at the same time. The optimal perturbation of T-Drazin inverse of tensors and the solution of a system of tensor equations have been given.
引用
收藏
页码:1565 / 1587
页数:23
相关论文
共 38 条
  • [1] [Anonymous], 1979, Generalized Inverse of Linear Transformations
  • [2] Chan R., 2007, INTRO ITERATIVE TOEP
  • [3] Che M.L., 2020, Theory and Computation of Complex Tensors and its Applications
  • [4] THE COMPUTATION OF LOW MULTILINEAR RANK APPROXIMATIONS OF TENSORS VIA POWER SCHEME AND RANDOM PROJECTION
    Che, Maolin
    Wei, Yimin
    Yan, Hong
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (02) : 605 - 636
  • [5] Randomized algorithms for the approximations of Tucker and the tensor train decompositions
    Che, Maolin
    Wei, Yimin
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 395 - 428
  • [6] A DRAZIN INVERSE FOR RECTANGULAR MATRICES
    CLINE, RE
    GREVILLE, TNE
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 29 (FEB) : 53 - 62
  • [7] Cvetkovic D. S., 2017, ALGEBRAIC PROPERTIES, V52
  • [8] Approximating the restricted 1-center in graphs
    Ding, Wei
    Qiu, Ke
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 774 : 31 - 43
  • [9] Drazin MP., 1958, AM MATH MONTHLY, V65, P506, DOI [10.1080/00029890.1958.11991949, DOI 10.2307/2308576.416]
  • [10] Facial Recognition Using Tensor-Tensor Decompositions
    Hao, Ning
    Kilmer, Misha E.
    Braman, Karen
    Hoover, Randy C.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01): : 437 - 463