The complex Hessian quotient flow on compact Hermitian manifolds

被引:0
作者
Zhou, Jundong [1 ]
Chu, Yawei [1 ]
机构
[1] Fuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
关键词
Hermitian manifolds; complex quotient flow; a priori estimates; long-time existence; convergence; MONGE-AMPERE EQUATION; NONLINEAR ELLIPTIC-EQUATIONS; REGULARIZING PROPERTIES; CONVERGENCE;
D O I
10.3934/math.2022416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the parabolic Hessian quotient equation on compact Hermitian manifolds. By setting up a priori estimates of the admissible solutions, we prove the long-time existence of the solution to the parabolic Hessian quotient equation and its convergence. As an application, we show the solvability of a class of complex Hessian quotient equations, which generalizes the relevant results.
引用
收藏
页码:7441 / 7461
页数:21
相关论文
共 30 条
[1]  
[Anonymous], 1999, ASIAN J. MATH
[2]   Weak solutions to the complex Hessian equation [J].
Blocki, Z .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (05) :1735-+
[4]  
CHERRIER P, 1987, B SCI MATH, V111, P343
[5]   Solutions to degenerate complex Hessian equations [J].
Chinh, Lu Hoang .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (06) :785-805
[6]   The parabolic Monge-Ampere equation on compact almost Hermitian manifolds [J].
Chu, Jianchun .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 761 :1-24
[7]  
Collins TC, 2017, J DIFFER GEOM, V107, P47
[8]   LIOUVILLE AND CALABI-YAU TYPE THEOREMS FOR COMPLEX HESSIAN EQUATIONS [J].
Dinew, Slawomir ;
Kolodziej, Slawomir .
AMERICAN JOURNAL OF MATHEMATICS, 2017, 139 (02) :403-415
[9]  
EVANS LC, 1982, COMMUN PUR APPL MATH, V35, P334
[10]  
Gill M, 2011, COMMUN ANAL GEOM, V19, P277