Nanoscale hydroxyapatite particles for bone tissue engineering

被引:1297
作者
Zhou, Hongjian [1 ]
Lee, Jaebeom [1 ]
机构
[1] Pusan Natl Univ, Dept Nanomed Engn, Coll Nanosci & Nanotechnol, Miryang 627706, South Korea
关键词
Biomaterials; Bioceramics; Nanoscale particles; Hydroxyapatite; Bone tissue engineering; CALCIUM-PHOSPHATE CEMENTS; WALLED CARBON NANOTUBE; SOL-GEL; MECHANICAL-PROPERTIES; POROUS HYDROXYAPATITE; SURFACE MODIFICATION; ALUMINUM-OXIDE; DRUG-DELIVERY; NANOCRYSTALLINE HYDROXYAPATITE; MECHANOCHEMICAL SYNTHESIS;
D O I
10.1016/j.actbio.2011.03.019
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAP formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2769 / 2781
页数:13
相关论文
共 179 条
[1]   Nano iron oxide-hydroxyapatite composite ceramics with enhanced radiopacity [J].
Ajeesh, M. ;
Francis, B. F. ;
Annie, John ;
Varma, P. R. Harikrishna .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (05) :1427-1434
[2]   Biomineralization - Naturally aligned nanocrystals [J].
Alivisatos, AP .
SCIENCE, 2000, 289 (5480) :736-737
[3]   In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair [J].
Appleford, Mark R. ;
Oh, Sunho ;
Oh, Namsik ;
Ong, Joo L. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 89A (04) :1019-1027
[4]   Silicon incorporation in hydroxylapatite obtained by controlled crystallization [J].
Arcos, D ;
Rodríguez-Carvajal, J ;
Vallet-Regí, M .
CHEMISTRY OF MATERIALS, 2004, 16 (11) :2300-2308
[5]   Long-term bone ingrowth and residual microhardness of porous block hydroxyapatite implants in humans [J].
Ayers, RA ;
Simske, SJ ;
Nunes, CR ;
Wolford, LM .
JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 1998, 56 (11) :1297-1301
[6]   In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating [J].
Balani, K. ;
Zhang, T. ;
Karakoti, A. ;
Li, W. Z. ;
Seal, S. ;
Agarwal, A. .
ACTA MATERIALIA, 2008, 56 (03) :571-579
[7]   Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution [J].
Balani, Kantesh ;
Chen, Yao ;
Harlinkar, Sandip P. ;
Dahotre, Narendra B. ;
Agarwal, Arvind .
ACTA BIOMATERIALIA, 2007, 3 (06) :944-951
[8]   Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro [J].
Balani, Kantesh ;
Anderson, Rebecca ;
Laha, Tapas ;
Andara, Melanie ;
Tercero, Jorge ;
Crumpler, Eric ;
Agarwal, Arvind .
BIOMATERIALS, 2007, 28 (04) :618-624
[9]   The nano-scratch behavior of biocompatible hydroxyapatite reinforced with aluminum oxide and carbon nanotubes [J].
Balani, Kantesh ;
Lahiri, Debrupa ;
Keshri, Anup K. ;
Bakshi, S. R. ;
Tercero, Jorge E. ;
Agarwal, Arvind .
JOM, 2009, 61 (09) :63-66
[10]   Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J].
Banfield, JF ;
Welch, SA ;
Zhang, HZ ;
Ebert, TT ;
Penn, RL .
SCIENCE, 2000, 289 (5480) :751-754