Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system

被引:100
作者
Yin, Yan [1 ]
Fan, Mingzhe [1 ]
Jiao, Kui [1 ]
Du, Qing [1 ]
Qin, Yanzhou [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
关键词
Proton exchange membrane fuel cell; Hydrogen recirculation; Secondary flow tube; Suction chamber; Ejector; VACUUM EJECTOR; CFD ANALYSIS; DESIGN; PARAMETERS; FLOW; OPERATION;
D O I
10.1016/j.enconman.2016.09.024
中图分类号
O414.1 [热力学];
学科分类号
摘要
Two-dimensional axisymmetric ejector model neglects the non-axisymmetric flow properties in the ejector and may not apply well for the ejector with a side-branch secondary flow tube. In this study, a three-dimensional numerical model of an ejector for the anode recirculation in a proton exchange membrane fuel cell system is established. The renormalization group k-epsilon turbulent model is utilized in the ejector simulation. A side-branch secondary flow tube and a suction chamber are incorporated in the ejector model, and their effects are investigated. It is found that the ejector recirculation ratio representing the ejector performance increases significantly with the secondary flow tube inlet area; and as the secondary flow tube inlet area is fixed, the recirculation ratio is larger for the ejector design having smaller pressure in the suction chamber. The ejector recirculation ratio increases slightly with the secondary flow tube convergence and inclination angles, while it decreases fist and then increases with the suction chamber diameter. An optimization of the ejector geometric parameters is carried out using a sequential method. The effects of operating conditions on the ejector performance are also investigated. It is shown that both the relative humidity and temperature of the secondary flow influence the ejector selectivity, and more water vapor but less hydrogen is recirculated for both higher secondary flow humidity and temperature. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1106 / 1117
页数:12
相关论文
共 50 条
  • [1] Numerical optimization of ejector for enhanced hydrogen recirculation in proton exchange membrane fuel cells
    Arabbeiki, Masoud
    Mansourkiaei, Mohsen
    Ferrero, Domenico
    Santarelli, Massimo
    JOURNAL OF POWER SOURCES, 2025, 641
  • [2] Performance investigation on the bypass ejector for a proton exchange membrane fuel cell system
    Han, Jiquan
    Besagni, Giorgio
    Mereu, Riccardo
    Inzoli, Fabio
    Feng, Jianmei
    Peng, Xueyuan
    APPLIED THERMAL ENGINEERING, 2024, 241
  • [3] Study on multicomponent and multiphase of the ejector for proton exchange membrane fuel cell hydrogen recirculation
    Sun, Wenhui
    Zhang, Hailun
    Jia, Lei
    Xue, Haoyuan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (23) : 13681 - 13697
  • [4] Performance degradation of a proton exchange membrane fuel cell with dual ejector-based recirculation
    Liu, Yang
    Xiao, Biao
    Zhao, Junjie
    Fan, Lixin
    Luo, Xiaobing
    Tu, Zhengkai
    Chan, Siew Hwa
    ENERGY CONVERSION AND MANAGEMENT-X, 2021, 12
  • [5] Performance investigation of a multi-nozzle ejector for proton exchange membrane fuel cell system
    Han, Jiquan
    Feng, Jianmei
    Hou, Tianfang
    Peng, Xueyuan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (02) : 3031 - 3048
  • [6] A novel dual-nozzle ejector for enhancement of hydrogen recirculation applied to proton exchange membrane fuel cell system
    Yin, Bifeng
    Li, Zekai
    Dong, Fei
    Xu, Sheng
    Ni, Huaisheng
    JOURNAL OF POWER SOURCES, 2023, 580
  • [7] Study on multicomponent and multiphase of the ejector for proton exchange membrane fuel cell hydrogen recirculation
    Wenhui Sun
    Hailun Zhang
    Lei Jia
    Haoyuan Xue
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 13681 - 13697
  • [8] Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation
    Wang, Bowen
    Deng, Hao
    Jiao, Kui
    APPLIED ENERGY, 2018, 225 : 1 - 13
  • [9] Numerical Modeling and Analysis of Ejector in the Proton Exchange Membrane Fuel Cell System
    Zhu, Yinhai
    Li, Yanzhong
    Cai, Wenjian
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 2850 - +
  • [10] Structural optimization of hydrogen recirculation ejector for proton exchange membrane fuel cells considering the boundary layer separation effect
    Bian, Jiang
    Zhang, Yue
    Liu, Yang
    Gong, Liang
    Cao, Xuewen
    JOURNAL OF CLEANER PRODUCTION, 2023, 397