Advanced oil pollution detection using an airborne hyperspectral lidar technology

被引:6
作者
Samberg, A [1 ]
机构
[1] AVAPROedu, Helsinki 00101, Finland
来源
Laser Radar Technology and Applications X | 2005年 / 5791卷
关键词
airborne; hyperspectral; lidar; technology; oil; pollution; detection;
D O I
10.1117/12.607590
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The increasing demand on accurately monitoring various pollutions, especially, oil in seawater and in ice, requires the employment of advanced remote sensing means. These techniques must be real-time and suitable for multiple tasks. One of very promising oil remote sensing techniques is a hyperspectral analyze of a laser light reflected by oil film. There is some development work going on in the world. This activity focuses on a modem lidar system, which is called a multi-wave length hyperspectral lidar system. Our paper provides an overview of state-of-art of hyperspectral lidar technology up-to-date.
引用
收藏
页码:308 / 317
页数:10
相关论文
共 50 条
  • [31] The assessment of synergetic effects of airborne LiDAR, CCD and hyperspectral data for aboveground biomass estimation
    Shen, Xin
    Cao, Lin
    Zhang, Zhengnan
    Wang, Guibin
    Cao, Fuliang
    2018 FIFTH INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA), 2018, : 299 - 303
  • [32] Advanced Airborne Hyperspectral Imaging System (AAHIS)
    Topping, M
    Pfeiffer, J
    Sparks, A
    Jim, KTC
    Yoon, D
    IMAGING SPECTROMETRY VIII, 2002, 4816 : 1 - 11
  • [33] Integration of Airborne LiDAR and Hyperspectral Data for Maize FPAR Estimation Based on a Physical Model
    Qin, Haiming
    Wang, Cheng
    Xi, Xiaohuan
    Nie, Sheng
    Zhou, Guoqing
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (07) : 1120 - 1124
  • [34] Classifying Forest Type in the National Forest Inventory Context with Airborne Hyperspectral and Lidar Data
    Shoot, Caileigh
    Andersen, Hans-Erik
    Moskal, L. Monika
    Babcock, Chad
    Cook, Bruce D.
    Morton, Douglas C.
    REMOTE SENSING, 2021, 13 (10)
  • [35] Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China
    Zhao, Yujin
    Zeng, Yuan
    Zheng, Zhaoju
    Dong, Wenxue
    Zhao, Dan
    Wu, Bingfang
    Zhao, Qianjun
    REMOTE SENSING OF ENVIRONMENT, 2018, 213 : 104 - 114
  • [36] Object-Based Tree Species Classification Using Airborne Hyperspectral Images and LiDAR Data
    Wu, Yanshuang
    Zhang, Xiaoli
    FORESTS, 2020, 11 (01):
  • [37] DETECTION OF VEHICLES IN SHADOW AREAS USING COMBINED HYPERSPECTRAL AND LIDAR DATA
    Shimoni, M.
    Tolt, G.
    Perneel, C.
    Ahlberg, J.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 4427 - 4430
  • [38] MAPPING VEGETATION AND SEASONAL THAW DEPTH IN CENTRAL ALASKA USING AIRBORNE HYPERSPECTRAL AND LIDAR DATA
    Zhang, Caiyun
    Douglas, Thomas A.
    Anderson, John E.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3070 - 3073
  • [39] Detection of sub-canopy forest structure using airborne LiDAR
    Jarron, Lukas R.
    Coops, Nicholas C.
    MacKenzie, William H.
    Tompalski, Piotr
    Dykstra, Pamela
    REMOTE SENSING OF ENVIRONMENT, 2020, 244
  • [40] Detection of petroleum hydrocarbons in continental areas using airborne hyperspectral thermal infrared data (SEBASS)
    Scafutto, Rebecca Del'Papa Moreira
    Lievens, Caroline
    Hecker, Christopher
    Meer, Freek D. van der
    Filho, Carlos Roberto de Souza
    REMOTE SENSING OF ENVIRONMENT, 2021, 256