Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels

被引:123
作者
Lu, Song [1 ]
Hu, Qing-Miao [2 ]
Johansson, Borje [1 ,3 ]
Levente Vitos [1 ,3 ,4 ]
机构
[1] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[2] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[3] Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, SE-75120 Uppsala, Sweden
[4] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
基金
瑞典研究理事会; 匈牙利科学研究基金会; 欧洲研究理事会;
关键词
Stacking fault energy; First-principles electron theory; Austenitic stainless steels; TEMPERATURE-DEPENDENCE; 1ST-PRINCIPLES THEORY; PLASTIC-DEFORMATION; STRAIN-RATE; GRAIN-SIZE; TRANSFORMATION; MARTENSITE; IRON; MECHANISM;
D O I
10.1016/j.actamat.2011.05.049
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The alloying effects of Mn, Co and Nb on the stacking fault energy (SFE) of austenitic stainless steels, Fe-Cr-Ni with various Ni contents, are investigated via quantum-mechanical first-principles calculations. In the composition range (c(Cr) = 20%, 8 <= c(Ni) <= 20%, 0 <= c(Mn), c(Co), c(Nb) <= 8%, balance Fe) studied here, it is found that Mn always decreases the SFE at 0 K but increases it at room temperature in high-Ni (c(Ni) greater than or similar to 16%) alloys. The SFE always decreases with increasing Co content. Niobium increases the SFE significantly in low-Ni alloys; however, this effect is strongly diminished in high-Ni alloys. The SFE-enhancing effect of Ni usually observed in Fe-Cr-Ni alloys is inverted to an SFE-decreasing effect by Nb for c(Nb) greater than or similar to 3%. The revealed nonlinear composition dependencies are explained in terms of the peculiar magnetic contributions to the total SFE. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5728 / 5734
页数:7
相关论文
共 46 条
  • [1] STACKING-FAULT ENERGY MEASUREMENTS IN SOME AUSTENITIC STAINLESS-STEELS
    BAMPTON, CC
    JONES, IP
    LORETTO, MH
    [J]. ACTA METALLURGICA, 1978, 26 (01): : 39 - 51
  • [2] DIRECT OBSERVATIONS OF MARTENSITE NUCLEI IN STAINLESS-STEEL
    BROOKS, JW
    LORETTO, MH
    SMALLMAN, RE
    [J]. ACTA METALLURGICA, 1979, 27 (12): : 1839 - 1847
  • [3] BRREDIS JF, 1964, T METALL SOC AIME, V230, P1583
  • [4] INTER-LAYER INTERACTIONS AND THE ORIGIN OF SIC POLYTYPES
    CHENG, C
    NEEDS, RJ
    HEINE, V
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (06): : 1049 - 1063
  • [5] Thermodynamic modeling of the stacking fault energy of austenitic steels
    Curtze, S.
    Kuokkala, V. -T.
    Oikari, A.
    Talonen, J.
    Hanninen, H.
    [J]. ACTA MATERIALIA, 2011, 59 (03) : 1068 - 1076
  • [6] Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate
    Curtze, S.
    Kuokkala, V. -T.
    [J]. ACTA MATERIALIA, 2010, 58 (15) : 5129 - 5141
  • [7] Davis J.R., 1994, ASM Specialty Handbook: Stainless Steels
  • [8] STACKING-FAULT ENERGIES IN SEMICONDUCTORS FROM 1ST-PRINCIPLES CALCULATIONS
    DENTENEER, PJH
    VANHAERINGEN, W
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (32): : L883 - L887
  • [9] Grain Size Effect on the Martensite Formation in a High-Manganese TWIP Steel by the Rietveld Method
    Dini, G.
    Najafizadeh, A.
    Monir-Vaghefi, S. M.
    Ueji, R.
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2010, 26 (02) : 181 - 186
  • [10] DULIEU D, 1964, 86 IR STEEL I SPEC R, P140