CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease

被引:17
|
作者
Demirci, Selami [1 ]
Leonard, Alexis [1 ]
Essawi, Khaled [1 ,2 ]
Tisdale, John F. [1 ]
机构
[1] NHLBI, Cellular & Mol Therapeut Branch, NIH, Bethesda, MD 20814 USA
[2] Jazan Univ, Dept Med Lab Sci, Coll Appl Med Sci, Jazan 45142, Saudi Arabia
关键词
GENE EDITING STRATEGIES; GAMMA-GLOBIN GENE; HEREDITARY PERSISTENCE; GENOMIC DNA; BCL11A; THERAPY; HYDROXYUREA; TARGET; ANEMIA; EXPRESSION;
D O I
10.1016/j.omtm.2021.09.010
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Genome editing is potentially a curative technique available to all individuals with beta-hemoglobinopathies, including sickle cell disease (SCD). Fetal hemoglobin (HbF) inhibits sickle hemoglobin (HbS) polymerization, and it is well described that naturally occurring hereditary persistence of HbF (HPFH) alleviates disease symptoms; therefore, reawakening of developmentally silenced HbF in adult red blood cells (RBCs) has long been of interest as a therapeutic strategy. Recent advances in genome editing platforms, particularly with the use of CRISPR-Cas9, have paved the way for efficient HbF induction through the creation of artificial HPFH mutations, editing of transcriptional HbF silencers, and modulating epigenetic intermediates that govern HbF expression. Clinical trials investigating BCL11A enhancer editing in patients with b-hemoglobinopathies have demonstrated promising results, although follow-up is short and the number of patients treated to date is low. While practical, economic, and clinical challenges of genome editing are well recognized by the scientific community, potential solutions to overcome these hurdles are in development. Here, we review the recent progress and obstacles yet to be overcome for the most effective and feasible HbF reactivation practice using CRISPR-Cas9 genome editing as a curative strategy for patients with SCD.
引用
收藏
页码:276 / 285
页数:10
相关论文
共 50 条
  • [1] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Frangoul, H.
    Altshuler, D.
    Cappellini, M. D.
    Chen, Y-S
    Domm, J.
    Eustace, B. K.
    Foell, J.
    de la Fuente, J.
    Grupp, S.
    Handgretinger, R.
    Ho, T. W.
    Kattamis, A.
    Kernytsky, A.
    Lekstrom-Himes, J.
    Li, A. M.
    Locatelli, F.
    Mapara, M. Y.
    de Montalembert, M.
    Rondelli, D.
    Sharma, A.
    Sheth, S.
    Soni, S.
    Steinberg, M. H.
    Wall, D.
    Yen, A.
    Corbacioglu, S.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (03) : 252 - 260
  • [2] Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia
    Ye, Lin
    Wang, Jiaming
    Tan, Yuting
    Beyer, Ashley I.
    Xie, Fei
    Muench, Marcus O.
    Kan, Yuet Wai
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (38) : 10661 - 10665
  • [3] CRISPR-based gene therapy for the induction of fetal hemoglobin in sickle cell disease
    Mcmanus, Meghann
    Frangoul, Haydar
    Steinberg, Martin H.
    EXPERT REVIEW OF HEMATOLOGY, 2024, : 957 - 966
  • [4] Sickle cell disease: combination new therapies vs. CRISPR-Cas9 potential and challenges - review article
    Youssry, Ilham
    Ayad, Nardeen
    ANNALS OF HEMATOLOGY, 2024, 103 (08) : 2613 - 2619
  • [5] Development and IND-enabling studies of a novel Cas9 genome-edited autologous CD34+cell therapy to induce fetal hemoglobin for sickle cell disease
    Katta, Varun
    O'Keefe, Kiera
    Li, Yichao
    Mayuranathan, Thiyagaraj
    Lazzarotto, Cicera R.
    Wood, Rachael K.
    Levine, Rachel M.
    Powers, Alicia
    Mayberry, Kalin
    Manquen, Garret
    Yao, Yu
    Zhang, Jingjing
    Jang, Yoonjeong
    Nimmagadda, Nikitha
    Dempsey, Erin A.
    Lee, GaHyun
    Uchida, Naoya
    Cheng, Yong
    Fazio, Frank
    Lockey, Tim
    Meagher, Mike
    Sharma, Akshay
    Tisdale, John F.
    Zhou, Sheng
    Yen, Jonathan S.
    Weiss, Mitchell J.
    Tsai, Shengdar Q.
    MOLECULAR THERAPY, 2024, 32 (10) : 3433 - 3452
  • [6] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [7] CRISPR-Cas9 for muscle dystrophies
    Ballouhey, Oceane
    Bartoli, Marc
    Levy, Nicolas
    M S-MEDECINE SCIENCES, 2020, 36 (04): : 358 - 366
  • [8] In vivo CRISPR-Cas9 inhibition of hepatic LDH as treatment of primary hyperoxaluria
    Martinez-Turrillas, Rebeca
    Martin-Mallo, Angel
    Rodriguez-Diaz, Saray
    Zapata-Linares, Natalia
    Rodriguez-Marquez, Paula
    San Martin-Uriz, Patxi
    Vilas-Zornoza, Amaia
    Calleja-Cervantes, Maria E.
    Salido, Eduardo
    Prosper, Felipe
    Rodriguez-Madoz, Juan R.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2022, 25 : 137 - 146
  • [9] Revolutionary breakthrough: FDA approves CASGEVY, the first CRISPR/Cas9 gene therapy for sickle cell disease
    Singh, Ajeet
    Irfan, Hamza
    Fatima, Eeshal
    Nazir, Zainab
    Verma, Amogh
    Akilimali, Aymar
    ANNALS OF MEDICINE AND SURGERY, 2024, 86 (08): : 4555 - 4559
  • [10] CRISPR/Cas9 in the treatment of sickle cell disease (SCD) and its comparison with traditional treatment approaches: a review
    Tariq, Hamza
    Khurshid, Fatima
    Khan, Muhammad Hamza
    Dilshad, Aamna
    Zain, Ahmad
    Rasool, Warda
    Jawaid, Alishba
    Kunwar, Digbijay
    Khanduja, Sneha
    Akbar, Anum
    ANNALS OF MEDICINE AND SURGERY, 2024, 86 (10): : 5938 - 5946