Blade number effects in a scaled down wind farm

被引:7
作者
Newman, A. Jensen [1 ]
Cal, Raul Bayoan [2 ]
Castillo, Luciano [1 ]
机构
[1] Texas Tech Univ, Dept Mech Engn, Natl Wind Resource Ctr, Lubbock, TX 79409 USA
[2] Portland State Univ, Dept Mech Engn, Portland, OR 97201 USA
基金
美国国家科学基金会;
关键词
Wind energy; Blade number effects; Array performance; Turbulence; TURBINE WAKES; BOUNDARY-LAYER; FLOW;
D O I
10.1016/j.renene.2015.03.013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two 3 x 4 scaled down wind farms were analyzed to understand differences in wind turbine boundary layers when turbines operating at identical power coefficients have two or three blades. Mean streamwise velocities in two bladed turbine near wakes ranged between 10 and 100% larger than those in the three bladed case with large differences just behind the nacelle. In the rotor swept region of far wakes, mean velocity differences between the two arrays were about 10% (max) and became smaller with increasing streamwise direction. Contrary to these findings, regions above and below rotors become less similar deep in the array. Incoming flow to downstream turbines was shown to have greater Reynolds streamwise normal stress for three bladed rotors. Percentage differences ranged between about 30% for the second turbine down to 10% for the fourth turbine. Additionally, there is qualitative evidence that suggests incoming streamwise Reynolds normal stress becomes similar between the two types of turbines, indicating that asymptotically two and three bladed turbines could have similar fatigue loading properties. These results show that use of two bladed turbines would have the most impact when used in a wind farm's first two rows. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:472 / 481
页数:10
相关论文
共 44 条
[1]  
Ainslie J, 1985, 7 BWEA WIND EN C P
[2]  
[Anonymous], 1983, M2411 RIS NAT LAB
[3]   Modelling and measurements of wakes in large wind farms [J].
Barthelmie, R. J. ;
Rathmann, O. ;
Frandsen, S. T. ;
Hansen, K. ;
Politis, E. ;
Prospathopoulos, J. ;
Rados, K. ;
Cabezon, A. ;
Schlez, W. ;
Phillips, J. ;
Neubert, A. ;
Schepers, J. G. ;
van der Pijl, S. P. .
SCIENCE OF MAKING TORQUE FROM WIND, 2007, 75
[4]   Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm [J].
Barthelmie, R. J. ;
Frandsen, S. T. ;
Nielsen, M. N. ;
Pryor, S. C. ;
Rethore, P. -E. ;
Jorgensen, H. E. .
WIND ENERGY, 2007, 10 (06) :517-528
[5]   Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms [J].
Barthelmie, R. J. ;
Pryor, S. C. ;
Frandsen, S. T. ;
Hansen, K. S. ;
Schepers, J. G. ;
Rados, K. ;
Schlez, W. ;
Neubert, A. ;
Jensen, L. E. ;
Neckelmann, S. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (08) :1302-1317
[6]   Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore [J].
Barthelmie, R. J. ;
Hansen, K. ;
Frandsen, S. T. ;
Rathmann, O. ;
Schepers, J. G. ;
Schlez, W. ;
Phillips, J. ;
Rados, K. ;
Zervos, A. ;
Politis, E. S. ;
Chaviaropoulos, P. K. .
WIND ENERGY, 2009, 12 (05) :431-444
[7]   3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics [J].
Bazilevs, Y. ;
Hsu, M. -C. ;
Akkerman, I. ;
Wright, S. ;
Takizawa, K. ;
Henicke, B. ;
Spielman, T. ;
Tezduyar, T. E. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) :207-235
[8]  
Cal R., 2009, Journal Renewable and Sustainable Energy, V2, P129
[9]   Large eddy simulation study of fully developed wind-turbine array boundary layers [J].
Calaf, Marc ;
Meneveau, Charles ;
Meyers, Johan .
PHYSICS OF FLUIDS, 2010, 22 (01) :1-16
[10]   Reynolds number dependence of turbulence statistics in the wake of wind turbines [J].
Chamorro, Leonardo P. ;
Arndt, R. E. A. ;
Sotiropoulos, F. .
WIND ENERGY, 2012, 15 (05) :733-742