estimation in covariance selection models;
exact sampling distribution Wishart;
marginal likelihood;
nondecomposable graphical Gaussian model;
normalising constant;
D O I:
10.1093/biomet/92.2.317
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
A centred Gaussian model that is Markov with respect to an undirected graph G is characterised by the parameter set of its precision matrices which is the cone M+(G) of positive definite matrices with entries corresponding to the missing edges of G constrained to be equal to zero. In a Bayesian framework, the conjugate family for the precision parameter is the distribution with Wishart density with respect to the Lebesgue measure restricted to M+(G). We call this distribution the G-Wishart. When G is nondecomposable, the normalising constant of the G-Wishart cannot be computed in closed form. In this paper, we give a simple Monte Carlo method for computing this normalising constant. The main feature of our method is that the sampling distribution is exact and consists of a product of independent univariate standard normal and chi-squared distributions that can be read off the graph G. Computing this normalising constant is necessary for obtaining the posterior distribution of G or the marginal likelihood of the corresponding graphical Gaussian model. Our method also gives a way of sampling from the posterior distribution of the precision matrix.