A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation

被引:628
|
作者
Cai, Tony [1 ]
Liu, Weidong [1 ]
Luo, Xi [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Covariance matrix; Frobenius norm; Gaussian graphical model; Precision matrix; Rate of convergence; Spectral norm; VARIABLE SELECTION; COVARIANCE; CONVERGENCE; LIKELIHOOD; RECOVERY; RATES; MODEL;
D O I
10.1198/jasa.2011.tm10155
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a constrained l(1) minimization method for estimating a sparse inverse covariance matrix based on a sample of n iid p-variate random variables. The resulting estimator is shown to have a number of desirable properties. In particular, the rate of convergence between the estimator and the true s-sparse precision matrix under the spectral norm is s root logp/n when the population distribution has either exponential-type tails or polynomial-type tails. We present convergence rates under the elementwise l(infinity) norm and Frobenius norm. In addition, we consider graphical model selection. The procedure is easily implemented by linear programming. Numerical performance of the estimator is investigated using both simulated and real data. In particular, the procedure is applied to analyze a breast cancer dataset and is found to perform favorably compared with existing methods.
引用
收藏
页码:594 / 607
页数:14
相关论文
共 50 条
  • [1] THE EFFECT OF L1 PENALIZATION ON CONDITION NUMBER CONSTRAINED ESTIMATION OF PRECISION MATRIX
    Guo, Xiao
    Zhang, Chunming
    STATISTICA SINICA, 2017, 27 (03) : 1299 - 1317
  • [2] Adjusting for high-dimensional covariates in sparse precision matrix estimation by l1-penalization
    Yin, Jianxin
    Li, Hongzhe
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 365 - 381
  • [3] Sorted L1/L2 Minimization for Sparse Signal Recovery
    Wang, Chao
    Yan, Ming
    Yu, Junjie
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [4] A Completely Tuning-Free and Robust Approach to Sparse Precision Matrix Estimation
    Chau Tran
    Yu, Guo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] On the inconsistency of l1-penalised sparse precision matrix estimation
    Heinavaara, Otte
    Leppa-aho, Janne
    Corander, Jukka
    Honkela, Antti
    BMC BIOINFORMATICS, 2016, 17
  • [6] Sparse precision matrix estimation under lower polynomial moment assumption
    Miao, Li
    Wang, Jinru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2925 - 2940
  • [7] A new approach for ultrahigh dimensional precision matrix estimation
    Liang, Wanfeng
    Zhang, Yuhao
    Wang, Jiyang
    Wu, Yue
    Ma, Xiaoyan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 232
  • [8] Robust sparse precision matrix estimation for high-dimensional compositional data
    Liang, Wanfeng
    Wu, Yue
    Ma, Xiaoyan
    STATISTICS & PROBABILITY LETTERS, 2022, 184
  • [9] Fast and adaptive sparse precision matrix estimation in high dimensions
    Liu, Weidong
    Luo, Xi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 135 : 153 - 162
  • [10] Weighted lp - l1 minimization methods for block sparse recovery and rank minimization
    Cai, Yun
    ANALYSIS AND APPLICATIONS, 2021, 19 (02) : 343 - 361