Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers

被引:168
作者
Kenney, Mitchell [1 ]
Grant, James [1 ]
Shah, Yash D. [1 ]
Escorcia-Carranza, Ivonne [1 ]
Humphreys, Mark [1 ]
Cumming, David R. S. [1 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
metasurface; metamaterial absorber; absorber; terahertz absorber; broadband absorption; fractal; PHASE; CLOAK; REFLECTION;
D O I
10.1021/acsphotonics.7b00906
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Synthetic fractals inherently carry spatially encoded frequency information that renders them as an ideal candidate for broadband optical structures. Nowhere is this more true than in the terahertz (THz) band where there is a lack of naturally occurring materials with valuable optical properties. One example are perfect absorbers that are a direct step toward the development of highly sought after detectors and sensing devices. Metasurface absorbers that can be used to substitute for natural materials suffer from poor broadband performance, while those with high absorption and broadband capability typically involve complex fabrication and design and are multilayered. Here, we demonstrate a polarization-insensitive ultrathin (similar to lambda/6) planar metasurface THz absorber composed of supercells of fractal crosses capable of spanning one optical octave in bandwidth, while still being highly efficient. A sufficiently thick polyimide interlayer produces a unique absorption mechanism based on Salisbury screen and antireflection responses, which lends to the broadband operation. Experimental peak absorption exceeds 93%, while the average absorption is 83% from 2.82 THz to 5.15 THz. This new ultrathin device architecture, achieving an absorption-bandwidth of one optical octave, demonstrates a major advance toward a synthetic metasurface blackbody absorber in the THz band.
引用
收藏
页码:2604 / 2612
页数:9
相关论文
共 42 条
[1]  
Aslan E., 2015, ADV PHOTONICS 2015 O
[2]   Detection of concealed explosives at a distance using terahertz technology [J].
Baker, C. ;
Lo, T. ;
Tribe, W. R. ;
Cole, B. E. ;
Hogbin, M. K. ;
Kemp, M. C. .
PROCEEDINGS OF THE IEEE, 2007, 95 (08) :1559-1565
[3]   Dual-polarity plasmonic metalens for visible light [J].
Chen, Xianzhong ;
Huang, Lingling ;
Muehlenbernd, Holger ;
Li, Guixin ;
Bai, Benfeng ;
Tan, Qiaofeng ;
Jin, Guofan ;
Qiu, Cheng-Wei ;
Zhang, Shuang ;
Zentgraf, Thomas .
NATURE COMMUNICATIONS, 2012, 3
[4]   Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab [J].
Cui, Yanxia ;
Fung, Kin Hung ;
Xu, Jun ;
Ma, Hyungjin ;
Jin, Yi ;
He, Sailing ;
Fang, Nicholas X. .
NANO LETTERS, 2012, 12 (03) :1443-1447
[5]   Three-Dimensional Invisibility Cloak at Optical Wavelengths [J].
Ergin, Tolga ;
Stenger, Nicolas ;
Brenner, Patrice ;
Pendry, John B. ;
Wegener, Martin .
SCIENCE, 2010, 328 (5976) :337-339
[6]   Review of terahertz and subterahertz wireless communications [J].
Federici, John ;
Moeller, Lothar .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (11)
[7]   Polarization insensitive, broadband terahertz metamaterial absorber [J].
Grant, James ;
Ma, Yong ;
Saha, Shimul ;
Khalid, Ata ;
Cumming, David R. S. .
OPTICS LETTERS, 2011, 36 (17) :3476-3478
[8]   Simulation, Fabrication and Characterization of THz Metamaterial Absorbers [J].
Grant, James P. ;
McCrindle, Iain J. H. ;
Cumming, David R. S. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2012, (70)
[9]   High performance optical absorber based on a plasmonic metamaterial [J].
Hao, Jiaming ;
Wang, Jing ;
Liu, Xianliang ;
Padilla, Willie J. ;
Zhou, Lei ;
Qiu, Min .
APPLIED PHYSICS LETTERS, 2010, 96 (25)
[10]  
Huang L., 2013, Terahertz Sci. Technol., V6, P26