Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers

被引:87
作者
Guo, Songtao [1 ]
Li, Heng [1 ]
Lu, Yue [1 ]
Liu, Zhifang [1 ]
Hu, Xianluo [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; Bi-Sb alloy; Lattice softening; Anti-pulverization; High stability; LI-ION BATTERIES; ANODE MATERIAL; HIGH-CAPACITY; ALLOY ANODES; PERFORMANCE; CARBON; NANOPARTICLES; NITROGEN;
D O I
10.1016/j.ensm.2020.02.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high theoretical capacity of Sb-based intermetallic alloys makes them attractive potential anode materials for sodium-ion batteries (SIBs) with high energy density. However, their cycling stability is greatly restricted by the huge volumetric variations resulted from the intrinsic (de-)alloying mechanism. Herein, we demonstrate a unique lattice softening mechanism, which enables highly reversible sodium storage and stable cycling of the as-prepared Bi-Sb alloy/carbon nanofibers electrodes. Theoretical analyses show that the elastic modulus of Bi-Sb alloys is reduced whereas the toughness is enhanced by tuning the lattice chemistry of rhombohedral Bi-Sb alloys, which is of great importance in relieving the concentrated stress during the continuous (de-)sodiation processes. In-situ characterization and electrochemical evaluations demonstrate that the electrodes made of BiSb3/C nanofibers exhibit high anti-pulverization capability upon Na-cycling and extraordinary long-life cyclability. Specifically, a highly reversible capacity of 233.2 mAh g(-1) at 2 A g(-1) is achieved over 2500 cycles. Moreover, a full cell assembled with the pre-sodiated BiSb3/C anode and a Na3V2(PO4)(3)/C cathode delivers a high reversible capacity of 333.2 mAh g(-1) at 0.2 A g(-1) over 200 cycles. This present work provides further understandings and new solution for developing high-performance alloying-based anodes for SIBs.
引用
收藏
页码:270 / 278
页数:9
相关论文
共 58 条
[1]   Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy [J].
Allan, Phoebe K. ;
Griffin, John M. ;
Darwiche, Ali ;
Borkiewicz, Olaf J. ;
Wiaderek, Kamila M. ;
Chapman, Karena W. ;
Morris, Andrew J. ;
Chupas, Peter J. ;
Monconduit, Laure ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (07) :2352-2365
[2]   Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes [J].
Chevrier, Vincent L. ;
Liu, Li ;
Dinh Ba Le ;
Lund, Jesse ;
Molla, Biniam ;
Reimer, Karl ;
Krause, Larry J. ;
Jensen, Lowell D. ;
Figgemeier, Egbert ;
Eberman, Kevin W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) :A783-A791
[3]   Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries [J].
Choi, Sunghun ;
Kwon, Tae-Woo ;
Coskun, Ali ;
Choi, Jang Wook .
SCIENCE, 2017, 357 (6348) :279-283
[4]   Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes [J].
Cui, Chunyu ;
Xu, Jiantie ;
Zhang, Yiqiong ;
Wei, Zengxi ;
Mao, Minglei ;
Lian, Xin ;
Wang, Shuangyin ;
Yang, Chongyin ;
Fan, Xiulin ;
Ma, Jianmin ;
Wang, Chunsheng .
NANO LETTERS, 2019, 19 (01) :538-544
[5]   Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism [J].
Darwiche, Ali ;
Marino, Cyril ;
Sougrati, Moulay T. ;
Fraisse, Bernard ;
Stievano, Lorenzo ;
Monconduit, Laure .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) :20805-20811
[6]   Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries [J].
Duan, Wenchao ;
Zhu, Zhiqiang ;
Li, Hao ;
Hu, Zhe ;
Zhang, Kai ;
Cheng, Fangyi ;
Chen, Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (23) :8668-8675
[7]   Hierarchical Porous Sb Films on 3D Cu Substrate Have Promise for Stable Sodium Storage [J].
Fan, Xiao-Yong ;
Han, Jiaxing ;
Jiang, Yu ;
Ni, Jiangfeng ;
Gou, Lei ;
Li, Dong-Lin ;
Li, Liang .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (08) :3598-3602
[8]  
Frantsevich I.N., 1982, ELASTIC CONSTANTS EL, P60
[9]   A Dealloying Synthetic Strategy for Nanoporous Bismuth-Antimony Anodes for Sodium Ion Batteries [J].
Gao, Hui ;
Niu, Jiazheng ;
Zhang, Chi ;
Peng, Zhangquan ;
Zhang, Zhonghua .
ACS NANO, 2018, 12 (04) :3568-3577
[10]   Sodium storage mechanisms of bismuth in sodium ion batteries: An operando X-ray diffraction study [J].
Gao, Hui ;
Ma, Wensheng ;
Yang, Wanfeng ;
Wang, Jiawei ;
Niu, Jiazheng ;
Luo, Fakui ;
Peng, Zhangquan ;
Zhang, Zhonghua .
JOURNAL OF POWER SOURCES, 2018, 379 :1-9