A combined immersed boundary and discrete unified gas kinetic scheme for particle-fluid flows

被引:44
|
作者
Tao, Shi [1 ]
Zhang, Haolong [1 ]
Guo, Zhaoli [1 ,2 ]
Wang, Lian-Ping [1 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[3] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA
[4] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Discrete unified gas kinetic scheme; Immersed boundary method; Strang-Splitting technology; Particulate flows; Fluid-solid interactions; LATTICE-BOLTZMANN METHOD; DIRECT NUMERICAL-SIMULATION; INTERFACE METHOD; SEDIMENTATION; CYLINDER; VELOCITY; SINGLE; MODEL;
D O I
10.1016/j.jcp.2018.08.047
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A discrete unified gas kinetic scheme (DUGKS) coupled with the immersed boundary (IB) method is developed to perform interface-resolved simulation of particle-laden flows. The present method (IB-DUGKS) preserves the respective advantages of the IB and DUGKS, i.e., the flexibility and efficiency for treating complex flows, and the robustness and low numerical-dissipation. In IB-DUGKS, the IB method is used to treat the fluid-solid interfaces and the DUGKS is applied to simulate the fluid flow, making use of the Lagrangian and Eulerian meshes, respectively. Those two meshes are fully independent, which contributes to the avoidance of grid regeneration when a solid particle moves. Specifically, in the present implementation of IB-DUGKS, the no-slip boundary condition at the particle surface is accurately enforced by introducing an efficient iterative forcing algorithm, and the IB force induced by the particle boundary is conveniently incorporated into the DUGKS with the Strang-Splitting scheme. The accuracy of the IB-DUGKS is first verified in the flows past a stationary cylinder and an oscillating cylinder in a quiescent fluid. After that, several well-established two- and three-dimensional particulate flow problems are simulated, including the sedimentation of a particle and the DKT dynamics of two particles in a channel, and a group of particles settling in an enclosure. In all test cases, the results are in good agreement with the data available in the literature, demonstrating that the proposed IB-DUGKS is a promising tool for simulating particulate flows. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:498 / 518
页数:21
相关论文
共 50 条
  • [1] Second-order accurate immersed boundary-discrete unified gas kinetic scheme for fluid-particle flows
    Tao, Shi
    Chen, Baiman
    Yang, Xiaoping
    Huang, Simin
    COMPUTERS & FLUIDS, 2018, 165 : 54 - 63
  • [2] An immersed boundary method based on the discrete unified gas kinetic scheme
    National Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan
    430074, China
    Kung Cheng Je Wu Li Hsueh Pao, 3 (539-544):
  • [3] A sharp interface immersed boundary-discrete unified gas kinetic scheme for fluid-solid flows with heat transfer
    Tao, Shi
    Wang, Liang
    He, Qing
    Chen, Jiechao
    Luo, Jiahong
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 139
  • [4] Discrete unified gas kinetic scheme with a force term for incompressible fluid flows
    Wu, Chen
    Shi, Baochang
    Chai, Zhenhua
    Wang, Peng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (12) : 2608 - 2629
  • [5] Discrete unified gas kinetic scheme for continuum compressible flows
    Guo, Zhaoli
    Wang, Lian-Ping
    Qi, Yiming
    PHYSICAL REVIEW E, 2023, 107 (02)
  • [6] Pseudopotential-based discrete unified gas kinetic scheme for modeling multiphase fluid flows
    Zeren Yang
    Sha Liu
    Congshan Zhuo
    Chengwen Zhong
    Advances in Aerodynamics, 4
  • [7] Pseudopotential-based discrete unified gas kinetic scheme for modeling multiphase fluid flows
    Yang, Zeren
    Liu, Sha
    Zhuo, Congshan
    Zhong, Chengwen
    ADVANCES IN AERODYNAMICS, 2022, 4 (01)
  • [8] An immersed boundary-discrete unified gas kinetic scheme for simulating natural convection involving curved surfaces
    Li, Chao
    Wang, Lian-Ping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 1059 - 1070
  • [9] Optimized discrete unified gas kinetic scheme for continuum and rarefied flows
    Wang, Lu
    Liang, Hong
    Xu, Jiangrong
    PHYSICS OF FLUIDS, 2023, 35 (01)
  • [10] Progress of discrete unified gas-kinetic scheme for multiscale flows
    Zhaoli Guo
    Kun Xu
    Advances in Aerodynamics, 3