Arctigenin Alleviates Oxidative Stress in Cerebral Ischemia/Reperfusion Injury Rats by Keap1-Nrf2 Pathway

被引:0
|
作者
Chen, Jing [1 ]
Wang, Wenjie [2 ]
Xu, Shanshan [2 ]
Chen, Saizhen [2 ]
LinglingZhang [2 ]
机构
[1] Wenzhou Med Univ, Dept Pharm, Taizhou Hosp Zhejiang Prov, Lin Hai 317000, Peoples R China
[2] Taizhou Univ Hosp, Taizhou Cent Hosp, Taizhou 318000, Peoples R China
关键词
Arctigenin; cerebral ischemia/reperfusion (I/R) injury; oxidative stress; Keap1-Nrf2; pathway; ISCHEMIC-STROKE; ACTIVATION; PATHOPHYSIOLOGY; INHIBITION; PROTECTS;
D O I
10.3923/ijp.2021.464.473
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background and Objective: Arctigenin, a phenylpropanoid dibenzyl butyrolactone lignan, is one of the major active components in Fructus Arctii, has protective effects in cerebral Ischemia/Reperfusion (I/R) injury. However, the role of arctigenin in cerebral I/R injury has not been fully understood. This study aimed to investigate the possible antioxidant stress effects of arctigenin and its mechanism on cerebral I/R injured rats. Material and Methods: A rat model of cerebral I/R injury was established and treated with arctigenin. The activity of SOD and the levels of MDA and ROS were determined by chemical analysis. The expressions of NQO1, HO-1, Nrf2 and Keap1 were detected in Cortex and hippocampus using Western blot. The binding affinity of the Keap1 to the arctigenin was assessed by molecular docking. Results: Current results indicated that arctigenin could remarkably restrict the brain infarction area and ameliorate neuronal functional deficit. After treatment, the activities of SOD were significantly up-regulated and the levels of MDA and ROS were significantly down-regulated in cortex tissue and hippocampus tissue. Meanwhile, increased Keap1, Nrf2, HO-1 and NQO1 expression levels were detected in cerebral I/R injury rats treated with arctigenin. Additionally, molecular docking revealed that potential interaction of arctigenin with the Nrf2-binding site in the Keap1 protein through hydrogen and hydrophobic interactions. Conclusion: This study suggested that arctigenin exerted a protective effect on cerebral ischemia/reperfusion injury in rats, which is probably related to activate Keap1-Nrf2 signaling pathway to alleviate oxidative stress damage.
引用
收藏
页码:464 / 473
页数:10
相关论文
共 50 条
  • [31] Screening of Natural Compounds as Activators of the Keap1-Nrf2 Pathway
    Wu, Kai C.
    McDonald, Peter R.
    Liu, Jie
    Klaassen, Curtis D.
    PLANTA MEDICA, 2014, 80 (01) : 97 - 104
  • [32] β-Caryophyllene Attenuates Focal Cerebral Ischemia-Reperfusion Injury by Nrf2/HO-1 Pathway in Rats
    Lou, Jie
    Cao, Guangxiu
    Li, Ranran
    Liu, Jie
    Dong, Zhi
    Xu, Lu
    NEUROCHEMICAL RESEARCH, 2016, 41 (06) : 1291 - 1304
  • [33] Formononetin alleviates cerebral ischemia-reperfusion injury in rats by targeting the PARP-1/PARG/Iduna signaling pathway
    Luo, Jie
    Cai, Youde
    Wei, Dingling
    Cao, Liping
    He, Qiansong
    Wu, Yuanhua
    BRAIN RESEARCH, 2024, 1829
  • [34] Simvastatin attenuates renal ischemia/reperfusion injury from oxidative stress via targeting Nrf2/HO-1 pathway
    Zhang, Yu
    Rong, Shu
    Feng, Yi
    Zhao, Liqun
    Hong, Jiang
    Wang, Ruilan
    Yuan, Weijie
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2017, 14 (05) : 4460 - 4466
  • [35] Stigmasterol alleviates cerebral ischemia/reperfusion injury by attenuating inflammation and improving antioxidant defenses in rats
    Liang, Qilong
    Yang, Jun
    He, Jiaji
    Chen, Xiaoling
    Zhang, Hong
    Jia, Maolin
    Liu, Kai
    Jia, Chuangchuang
    Pan, Yanhong
    Wei, Jinwang
    BIOSCIENCE REPORTS, 2020, 40
  • [36] Bioinformatics analyses provide insight into distant homology of the Keap1-Nrf2 pathway
    Gacesa, Ranko
    Dunlap, Walter C.
    Long, Paul F.
    FREE RADICAL BIOLOGY AND MEDICINE, 2015, 88 : 373 - 380
  • [37] Xanthoangelol alleviates cerebral ischemia reperfusion injury in rats
    Chao, Meng
    Gao, Chao
    Huang, Yaping
    ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, 2021, 304 (03): : 602 - 612
  • [38] Schisandrin B alleviates acute oxidative stress via modulation of the Nrf2/Keap1-mediated antioxidant pathway
    Wu, Ying
    Li, Zheng-cai
    Yao, Li-qing
    Li, Mai
    Tang, Mei
    APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2019, 44 (01) : 1 - 6
  • [39] Desflurane Preconditioning Protects Against Renal Ischemia-Reperfusion Injury and Inhibits Inflammation and Oxidative Stress in Rats Through Regulating the Nrf2-Keap1-ARE Signaling Pathway
    Zheng, Yan
    Lu, Hui
    Huang, Huiqiong
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2020, 14 : 1351 - 1362
  • [40] Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway
    Mei, Zhigang
    Du, Lipeng
    Liu, Xiaolu
    Chen, Xiangyu
    Tian, Huan
    Deng, Yihui
    Zhang, Wenli
    FOOD & FUNCTION, 2022, 13 (01) : 198 - 212