Optical solitons with complex Ginzburg-Landau equation having a plethora of nonlinear forms with a couple of improved integration norms

被引:33
作者
Zayed, Elsayed M. E. [1 ]
Alngar, Mohamed E. M. [1 ]
El-Horbaty, Mahmoud [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ]
Alshomrani, Ali Saleh [3 ]
Ekici, Mehmet [6 ]
Yildirim, Yakup [7 ]
Belic, Milivoj R. [8 ]
机构
[1] Zagazig Univ, Dept Math, Fac Sci, Zagazig, Egypt
[2] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
[6] Yozgat Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
[7] Near East Univ, Fac Arts & Sci, Dept Math, CY-99138 Nicosia, Cyprus
[8] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2020年 / 207卷
关键词
Solitons; Extended generalized Kudryashov's method; Rational (G '/G)-expansion; BRIGHT;
D O I
10.1016/j.ijleo.2019.163804
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper secures optical soliton solutions from complex Ginzburg-Landau equation that is studied with nine different nonlinear forms. Two types of integration architecture are employed and these are improved versions of their earlier kinds. Bright, dark, singular as well as combo soliton solutions are recovered. Their existence is guaranteed with parameter constraints that are also enumerated.
引用
收藏
页数:34
相关论文
共 20 条
  • [1] Dark-singular combo optical solitons with fractional complex Ginzburg-Landau equation
    Abdou, M. A.
    Soliman, A. A.
    Biswas, Anjan
    Ekici, Mehmet
    Zhou, Qin
    Moshokoa, Seithuti P.
    [J]. OPTIK, 2018, 171 : 463 - 467
  • [2] A geo-numerical approach for the classification of fixed points in the reduced model of the cubic-quintic complex Ginzburg-Landau equation
    Aissat, A.
    Mohammedi, T.
    Alshehri, B.
    [J]. OPTIK, 2015, 126 (24): : 5325 - 5330
  • [3] Application of the first integral method for solving (1+1) dimensional cubic-quintic complex Ginzburg-Landau equation
    Akram, Ghazala
    Mahak, Nadia
    [J]. OPTIK, 2018, 164 : 210 - 217
  • [4] The world of the complex Ginzburg-Landau equation
    Aranson, IS
    Kramer, L
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 99 - 143
  • [5] Optical solitons with complex Ginzburg-Landau equation by modified simple equation method
    Arnous, Ahmed H.
    Seadawy, Aly R.
    Alqahtani, Rubayyi T.
    Biswas, Anjan
    [J]. OPTIK, 2017, 144 : 475 - 480
  • [6] Soliton solutions of fractional complex Ginzburg-Landau equation with Kerr law and non-Kerr law media
    Arshed, Saima
    [J]. OPTIK, 2018, 160 : 322 - 332
  • [7] TEMPORAL 1-SOLITON SOLUTION OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH POWER LAW NONLINEARITY
    Biswas, A.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2009, 96 : 1 - 7
  • [8] Chirp-free bright optical solitons and conservation laws for complex Ginzburg-Landau equation with three nonlinear forms
    Biswas, Anjan
    [J]. OPTIK, 2018, 174 : 207 - 215
  • [9] Optical soliton perturbation for complex Ginzburg-Landau equation with modified simple equation method
    Biswas, Anjan
    Yildirim, Yakup
    Yasar, Emrullah
    Triki, Houria
    Alshomrani, Ali Saleh
    Ullah, Malik Zaka
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    [J]. OPTIK, 2018, 158 : 399 - 415
  • [10] Optical soliton perturbation with complex Ginzburg-Landau equation using trial solution approach
    Biswas, Anjan
    Yildirim, Yakup
    Yasar, Emrullah
    Triki, Houria
    Alshomrani, Ali Saleh
    Ullah, Malik Zaka
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    [J]. OPTIK, 2018, 160 : 44 - 60