Well-Posedness for the Cauchy Problem for a System of Semirelativistic Equations

被引:3
|
作者
Fujiwara, Kazumasa [1 ]
Machihara, Shuji [2 ]
Ozawa, Tohru [3 ]
机构
[1] Waseda Univ, Dept Pure & Appl Phys, Shinjuku Ku, Tokyo 1698555, Japan
[2] Saitama Univ, Fac Sci, Saitama 3388570, Japan
[3] Waseda Univ, Dept Appl Phys, Shinjuku Ku, Tokyo 1698555, Japan
关键词
NONLINEAR SCHRODINGER-EQUATIONS; REGULARITY;
D O I
10.1007/s00220-015-2347-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The local well-posedness for the Cauchy problem of a system of semirelativistic equations in one space dimension is shown in the Sobolev space H-s of order s >= 0. We apply the standard contraction mapping theorem by using Bourgain type spaces X-s,X-b. We also use an auxiliary space for the solution in L-2 = H-0. We give the global well-posedness by this conservation law and the argument of the persistence of regularity.
引用
收藏
页码:367 / 391
页数:25
相关论文
共 50 条