Quantum Hall plateau transitions in disordered superconductors

被引:105
作者
Kagalovsky, V [1 ]
Horovitz, B
Avishai, Y
Chalker, JT
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Technol Coll Beer Sheva, Sch Engn, IL-84100 Beer Sheva, Israel
[3] Univ Oxford, Oxford OX1 3NP, England
关键词
D O I
10.1103/PhysRevLett.82.3516
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a delocalization transition for noninteracting quasiparticles moving in two dimensions, which belongs to a new symmetry class. This symmetry class can be realized in a dirty, gapless superconductor in which time-reversal symmetry for orbital motion is broken, but spin-rotation symmetry is intact. We find a direct transition between two insulating phases with quantized Hall conductances of zero and two for the conserved quasiparticles. The energy of the quasiparticles acts as a relevant symmetry-breaking field at the critical point, which splits the direct transition into two conventional plateau transitions.
引用
收藏
页码:3516 / 3519
页数:4
相关论文
共 28 条
  • [1] Field theory of mesoscopic fluctuations in superconductor/normal-metal systems
    Altland, A
    Simons, BD
    Taras-Semchuk, D
    [J]. JETP LETTERS, 1998, 67 (01) : 22 - 27
  • [2] Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
    Altland, A
    Zirnbauer, MR
    [J]. PHYSICAL REVIEW B, 1997, 55 (02): : 1142 - 1161
  • [3] BUNDSCHUH R, CONDMAT9806172
  • [4] BUNDSCHUH R, CONDMAT9808297
  • [5] PERCOLATION, QUANTUM TUNNELLING AND THE INTEGER HALL-EFFECT
    CHALKER, JT
    CODDINGTON, PD
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (14): : 2665 - 2679
  • [6] THE DYNAMICS OF A DISORDERED LINEAR CHAIN
    DYSON, FJ
    [J]. PHYSICAL REVIEW, 1953, 92 (06): : 1331 - 1338
  • [7] ANDERSON LOCALIZATION FOR SUBLATTICE MODELS
    GADE, R
    [J]. NUCLEAR PHYSICS B, 1993, 398 (03) : 499 - 515
  • [8] GRUZBERG IA, CONDMAT9902063
  • [9] ANDERSON LOCALIZATION IN THE LOWEST LANDAU-LEVEL FOR A 2-SUBBAND MODEL
    HIKAMI, S
    SHIRAI, M
    WEGNER, F
    [J]. NUCLEAR PHYSICS B, 1993, 408 (03) : 415 - 426
  • [10] Models for the integer quantum hall effect: The network model, the Dirac equation, and a tight-binding Hamiltonian
    Ho, CA
    Chalker, JT
    [J]. PHYSICAL REVIEW B, 1996, 54 (12) : 8708 - 8713