Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites

被引:98
作者
Chang, Shu-Wei [1 ]
Nair, Arun K. [1 ]
Buehler, Markus J. [1 ,2 ,3 ]
机构
[1] MIT, Lab Atomist & Mol Mech, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
[2] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Ctr Computat Engn, Cambridge, MA 02139 USA
关键词
MOLECULAR-DYNAMICS; CONDUCTIVITY; COMPOSITES; SURFACES; FILMS; FIELD;
D O I
10.1088/0953-8984/24/24/245301
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Graphene has excellent mechanical, electrical and thermal properties. Recently, graphene-metal composites have been proposed as a means to combine the properties of metals with those of graphene, leading to mechanically, electrically and thermally functional materials. The understanding of metal-graphene nanocomposites is of critical importance in developing next-generation electrical, thermal and energy devices, but we currently lack a fundamental understanding of how their geometry and composition control their thermal properties. Here we report a series of atomistic simulations, aimed at assessing the geometry and temperature effects of the thermal interface conductance for copper-and nickel-graphene nanocomposites. We find that copper-graphene and nickel-graphene nanocomposites have similar thermal interface conductances, but that both cases show a strong performance dependence on the number of graphene layers between metal phases. Single-graphene-layer nanocomposites have the highest thermal interface conductance, approaching similar to 500 MW m(-2) K-1. The thermal interface conductance reduces to half this value in metal-bilayer graphene nanocomposites, and for more than three layers of graphene the thermal interface conductances further reduces to similar to 100 MW m(-2) K-1 and becomes independent with respect to the number of layers of graphene. This dependence is attributed to the relatively stronger bonding between the metal and graphene layer, and relatively weaker bonding between graphene layers. Our results suggest that designs combining metal with single graphene layers provide the best thermal properties.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Dependence of band structures on stacking and field in layered graphene [J].
Aoki, Masato ;
Amawashi, Hiroshi .
SOLID STATE COMMUNICATIONS, 2007, 142 (03) :123-127
[2]   EXPERIMENTAL-OBSERVATION OF FAST DIFFUSION OF LARGE ANTIMONY CLUSTERS ON GRAPHITE SURFACES [J].
BARDOTTI, L ;
JENSEN, P ;
HOAREAU, A ;
TREILLEUX, M ;
CABAUD, B .
PHYSICAL REVIEW LETTERS, 1995, 74 (23) :4694-4697
[3]   Graphene-aluminum nanocomposites [J].
Bartolucci, Stephen F. ;
Paras, Joseph ;
Rafiee, Mohammad A. ;
Rafiee, Javad ;
Lee, Sabrina ;
Kapoor, Deepak ;
Koratkar, Nikhil .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (27) :7933-7937
[4]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[5]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[6]   EMBEDDED-ATOM METHOD - DERIVATION AND APPLICATION TO IMPURITIES, SURFACES, AND OTHER DEFECTS IN METALS [J].
DAW, MS ;
BASKES, MI .
PHYSICAL REVIEW B, 1984, 29 (12) :6443-6453
[7]   Inelastic phonon interactions at solid-graphite interfaces [J].
Duda, John C. ;
Hopkins, Patrick E. ;
Beechem, Thomas E. ;
Smoyer, Justin L. ;
Norris, Pamela M. .
SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (04) :550-555
[8]   Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials [J].
Duda, John C. ;
Smoyer, Justin L. ;
Norris, Pamela M. ;
Hopkins, Patrick E. .
APPLIED PHYSICS LETTERS, 2009, 95 (03)
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Interfacial thermal resistance between metallic carbon nanotube and Cu substrate [J].
Gao, Feng ;
Qu, Jianmin ;
Yao, Matthew .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (12)