Infinitely many turning points for an elliptic problem with a singular non-linearity

被引:35
作者
Guo, Zongming [1 ]
Wei, Juncheng [2 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453002, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2008年 / 78卷
基金
中国国家自然科学基金;
关键词
D O I
10.1112/jlms/jdm121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem -Delta u = lambda|x|(alpha)/(1 - u)(P) in B, u = 0 on delta B, 0 < u < 1 in B, where alpha >= 0, p >= 1 and B is the unit ball in R-N (N >= 2). We show that there exists a lambda(*) > 0 such that for lambda < lambda(*), the minimizer is the only positive radial solution. Furthermore, if 2 < N < 2 + (2 (2 + alpha) (p + 1)) (p + root p2 + p), then the branch of positive radial solutions must undergo infinitely many turning points as the maximums of the radial solutions on the branch converge to 1. This solves Conjecture B in [N. Ghoussoub and Y. Gun, SIAM J. Math. Anal. 38 (2007) 1423-1449]. The key ingredient is the use of monotonicity formula.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 23 条