Hyperspectral image analysis for stand-off trace detection using IR laser spectroscopy

被引:5
作者
Jarvis, J. [1 ]
Fuchs, F. [1 ]
Hugger, S. [1 ]
Ostendorf, R. [1 ]
Butschek, L. [1 ]
Yang, Q. [1 ]
Dreyhaupt, A. [2 ]
Grahmann, J. [2 ]
Wagner, J. [1 ]
机构
[1] Fraunhofer Inst Appl Solid State Phys IAF, Tullastr 72, D-79108 Freiburg, Germany
[2] Fraunhofer Inst Photon Microsyst IPMS, Maria Reiche Str 2, D-01109 Dresden, Germany
来源
CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XVII | 2016年 / 9824卷
关键词
D O I
10.1117/12.2223604
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In the recent past infrared laser backscattering spectroscopy using Quantum Cascade Lasers (QCL) emitting in the molecular fingerprint region between 7.5 mu m and 10 mu m proved a highly promising approach for stand-off detection of dangerous substances. In this work we present an active illumination hyperspectral image sensor, utilizing QCLs as spectral selective illumination sources. A high performance Mercury Cadmium Telluride (MCT) imager is used for collection of the diffusely backscattered light. Well known target detection algorithms like the Adaptive Matched Subspace Detector and the Adaptive Coherent Estimator are used to detect pixel vectors in the recorded hyperspectral image that contain traces of explosive substances like PETN, RDX or TNT. In addition we present an extension of the backscattering spectroscopy technique towards real-time detection using a MOEMS EC-QCL.
引用
收藏
页数:10
相关论文
共 12 条
[1]  
[Anonymous], 2007, Speckle phenomena in optics: theory and applications
[2]   Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase [J].
Brandstetter, Markus ;
Genner, Andreas ;
Anic, Kresimir ;
Lendl, Bernhard .
ANALYST, 2010, 135 (12) :3260-3265
[3]   The challenge of changing signatures in infrared stand-off detection of trace explosives [J].
Furstenberg, Robert ;
Kendziora, Christopher ;
Papantonakis, Michael ;
Viet Nguyen ;
McGill, R. Andrew .
CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XV, 2014, 9073
[4]   Tunable External Cavity Quantum Cascade Lasers (EC-QCL): an Application Field for MOEMS Based Scanning Gratings [J].
Grahmann, Jan ;
Merten, Andre ;
Ostendorf, Ralf ;
Fontenot, Michael ;
Bleh, Daniela ;
Schenk, Harald ;
Wagner, Hans-joachim .
MOEMS AND MINIATURIZED SYSTEMS XIII, 2014, 8977
[5]   Quantum Cascade Laser based active hyperspectral imaging for standoff detection of chemicals on surfaces [J].
Hugger, S. ;
Fuchs, F. ;
Jarvis, J. ;
Yang, Q. K. ;
Rattunde, M. ;
Ostendorf, R. ;
Schilling, C. ;
Draid, R. ;
Bronner, W. ;
Aidam, R. ;
Wagner, J. ;
Tybussek, T. ;
Rieblinger, K. .
QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XIII, 2016, 9755
[6]   External cavity quantum cascade laser [J].
Hugi, Andreas ;
Maulini, Richard ;
Faist, Jerome .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (08)
[7]   The CFAR adaptive subspace detector is a scale-invariant GLRT [J].
Kraut, S ;
Scharf, LL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (09) :2538-2541
[8]   Hyperspectral subpixel target detection using the linear mixing model [J].
Manolakis, D ;
Siracusa, C ;
Shaw, G .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07) :1392-1409
[9]   Real-time spectroscopic sensing using a widely tunable External Cavity-QCL with MOEMS diffraction grating [J].
Ostendorf, Ralf ;
Butschek, Lorenz ;
Merten, Andre ;
Grahmann, Jan ;
Jarvis, Jan ;
Hugger, Stefan ;
Fuchs, Frank ;
Wagner, Joachim .
QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XIII, 2016, 9755
[10]   Automatic spectral target recognition in hyperspectral imagery [J].
Ren, H ;
Chang, CI .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2003, 39 (04) :1232-1249