Pressure Dependence and Branching Ratios in the Decomposition of 1-Pentyl Radicals: Shock Tube Experiments and Master Equation Modeling

被引:31
作者
Awan, Iftikhar A. [1 ]
Burgess, Donald R., Jr. [1 ]
Manion, Jeffrey A. [1 ]
机构
[1] NIST, Gaithersburg, MD 20899 USA
关键词
VIBRATIONAL ENERGY-TRANSFER; AB-INITIO; UNIMOLECULAR DECOMPOSITION; THERMAL-DECOMPOSITION; RATE-CONSTANT; ISOMERIZATION; ALKYL; PENTYL; ENTHALPIES; COMBUSTION;
D O I
10.1021/jp2115302
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The decomposition and intramolecular H-transfer isomerization reactions of the 1-pentyl radical have been studied at temperatures of 880 to 1055 K and pressures of 80 to 680 kPa using the single pulse shock tube technique and additionally investigated with quantum chemical methods. The 1-pentyl radical was generated by shock heating dilute mixtures of 1-iodopentane and the stable products of its decomposition have been observed by postshock gas chromatographic analysis. Ethene and propene are the main olefin products and account for >97% of the carbon balance from 1-pentyl. Also produced are very small amounts of (E)-2-pentene, (Z)-2-pentene, and 1-butene. The ethene/propene product ratio is pressure dependent and varies from about 3 to 5 over the range of temperatures and pressures studied. Formation of ethene and propene can be related to the concentrations of 1-pentyl and 2-pentyl radicals in the system and the relative rates of five-center intramolecular H-transfer reactions and beta C-C bond scissions. The 3-pentyl radical, formed via a four-center intramolecular H transfer, leads to 1-butene and plays only a very minor role in the system. The observed (E/Z)-2-pentenes can arise from a small amount of beta C-H bond scission in the 2-pentyl radical. The current experimental and computational results are considered in conjunction with relevant literature data from lower temperatures to develop a consistent kinetics model that reproduces the observed branching ratios and pressure effects. The present experimental results provide the first available data on the pressure dependence of the olefin product branching ratio for alkyl radical decomposition at high temperatures and require a value of <Delta E-down(1000 K)> = (675 +/- 100) cm(-1) for the average energy transferred in deactivating collisions in an argon bath gas when an exponential-down model is employed. High pressure rate expressions for the relevant H-transfer reactions and beta bond scissions are derived and a Rice Ramsberger Kassel Marcus/Master Equation (RRKM/ME) analysis has been performed and used to extrapolate the data to temperatures between 700 and 1900 K and pressures of 10 to 1 x 10(5) kPa.
引用
收藏
页码:2895 / 2910
页数:16
相关论文
共 62 条
[1]   Standard reactions for comparative rate studies: Experiments on the dehydrochlorination reactions of 2-chloropropane, chlorocyclopentane, and chlorocyclohexane [J].
Awan, Iftikhar A. ;
Burgess, Donald R., Jr. ;
Tsang, Wing ;
Manion, Jeffrey A. .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2012, 44 (06) :351-368
[2]   Shock tube study of the decomposition of cyclopentyl radicals [J].
Awan, Iftikhar A. ;
Burgess, Donald R., Jr. ;
Tsang, Wing ;
Manion, Jeffrey A. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 :341-349
[3]   Decomposition and Isomerization of 5-Methylhex-1-yl Radical [J].
Awan, Iftikhar A. ;
McGivern, W. Sean ;
Tsang, Wing ;
Manion, Jeffrey A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (30) :7832-7846
[4]   Kinetics of 1,4-Hydrogen Migration in the Alkyl Radical Reaction Class [J].
Bankiewicz, Barbara ;
Huynh, Lam K. ;
Ratkiewicz, Artur ;
Truong, Thanh N. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (08) :1564-1573
[5]   Ab initio calculations and RRKM/Master Equation modeling of chloroalkanes → alkenes + HCl reactions for use in comparative rate studies [J].
Burgess, Donald R., Jr. ;
Manion, Jeffrey A. .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2012, 44 (06) :369-385
[6]   THERMOCHEMISTRY OF ALKYL FREE-RADICALS [J].
COHEN, N .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (22) :9052-9058
[7]  
Coos E., 0520 ANL ISRAEL I TE
[8]  
Dean A., 2007, Comprehensive Chemical Kinetics, P105
[9]   ISOMERIZATION OF N-PENTYL AND 4-OXO-1-PENTYL RADICALS IN GAS PHASE [J].
ENDRENYI, L ;
LEROY, DJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1966, 70 (12) :4081-&
[10]  
Frenkel M., 2009, PUBLICATION SERIES N