MRI-based radiomics signature for localized prostate cancer: a new clinical tool for cancer aggressiveness prediction? Sub-study of prospective phase II trial on ultra-hypofractionated radiotherapy (AIRC IG-13218)

被引:38
作者
Gugliandolo, Simone Giovanni [1 ]
Pepa, Matteo [1 ]
Isaksson, Lars Johannes [1 ,2 ]
Marvaso, Giulia [1 ,3 ]
Raimondi, Sara [4 ]
Botta, Francesca [5 ]
Gandini, Sara [4 ]
Ciardo, Delia [1 ]
Volpe, Stefania [1 ,3 ]
Riva, Giulia [1 ,6 ]
Rojas, Damari Patricia [1 ]
Zerini, Dario [1 ]
Pricolo, Paola [7 ]
Alessi, Sarah [7 ]
Petralia, Giuseppe [3 ,7 ]
Summers, Paul Eugene [7 ]
Mistretta, Frnacesco Alessandro [8 ,9 ]
Luzzago, Stefano [8 ]
Cattani, Federica [5 ]
De Cobelli, Ottavio [3 ,8 ]
Cassano, Enrico [10 ]
Cremonesi, Marta [11 ]
Bellomi, Massimo [3 ,7 ]
Orecchia, Roberto [12 ]
Jereczek-Fossa, Barbara Alicja [1 ,3 ]
机构
[1] European Inst Oncol IRCCS, Div Radiotherapy, IEO, Via Ripamonti 435, I-20141 Milan, Italy
[2] European Sch Mol Med, IFOM IEO Campus,Via Adamello 16, I-20139 Milan, Italy
[3] Univ Milan, Dept Oncol & Hematooncol, Via Festa del Perdono 7, I-20122 Milan, Italy
[4] European Inst Oncol IRCCS, Dept Expt Oncol, Mol & Pharmacoepidemiol Unit, IEO, Via Ripamonti 435, I-20141 Milan, Italy
[5] European Inst Oncol IRCCS, Med Phys Unit, IEO, Via Ripamonti 435, I-20141 Milan, Italy
[6] Natl Ctr Oncol Hadrontherapy CNAO, Clin Dept, Pavia, Italy
[7] European Inst Oncol IRCCS, Div Radiol, IEO, Via Ripamonti 435, I-20141 Milan, Italy
[8] European Inst Oncol IRCCS, Div Urol, IEO, Via Ripamonti 435, I-20141 Milan, Italy
[9] Univ Milan, Via Festa del Perdono 7, I-20122 Milan, Italy
[10] European Inst Oncol IRCCS, Breast Imaging Div, IEO, Via Ripamonti 435, I-20141 Milan, Italy
[11] European Inst Oncol IRCCS, Radiat Res Unit, IEO, Via Ripamonti 435, I-20141 Milan, Italy
[12] European Inst Oncol IRCCS, IEO, Sci Directorate, Via Ripamonti 435, I-20141 Milan, Italy
关键词
Radiomics; Prostatic neoplasms; Magnetic resonance imaging; Classification; Biomarkers; IMAGE; OPTIMIZATION;
D O I
10.1007/s00330-020-07105-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Radiomic involves testing the associations of a large number of quantitative imaging features with clinical characteristics. Our aim was to extract a radiomic signature from axial T2-weighted (T2-W) magnetic resonance imaging (MRI) of the whole prostate able to predict oncological and radiological scores in prostate cancer (PCa). Methods This study included 65 patients with localized PCa treated with radiotherapy (RT) between 2014 and 2018. For each patient, the T2-W MRI images were normalized with the histogram intensity scale standardization method. Features were extracted with the IBEX software. The association of each radiomic feature with risk class, T-stage, Gleason score (GS), extracapsular extension (ECE) score, and Prostate Imaging Reporting and Data System (PI-RADS v2) score was assessed by univariate and multivariate analysis. Results Forty-nine out of 65 patients were eligible. Among the 1702 features extracted, 3 to 6 features with the highest predictive power were selected for each outcome. This analysis showed that texture features were the most predictive for GS, PI-RADS v2 score, and risk class; intensity features were highly associated with T-stage, ECE score, and risk class, with areas under the receiver operating characteristic curve (ROC AUC) ranging from 0.74 to 0.94. Conclusions MRI-based radiomics is a promising tool for prediction of PCa characteristics. Although a significant association was found between the selected features and all the mentioned clinical/radiological scores, further validations on larger cohorts are needed before these findings can be applied in the clinical practice.
引用
收藏
页码:716 / 728
页数:13
相关论文
共 33 条
[1]   Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer [J].
Abdollahi, Hamid ;
Mofid, Bahram ;
Shiri, Isaac ;
Razzaghdoust, Abolfazl ;
Saadipoor, Afshin ;
Mahdavi, Arash ;
Galandooz, Hassan Maleki ;
Mahdavi, Seied Rabi .
RADIOLOGIA MEDICA, 2019, 124 (06) :555-567
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[4]   Radiomic Features on MRI Enable Risk Categorization of Prostate Cancer Patients on Active Surveillance: Preliminary Findings [J].
Algohary, Ahmad ;
Viswanath, Satish ;
Shiradkar, Rakesh ;
Ghose, Soumya ;
Pahwa, Shivani ;
Moses, Daniel ;
Jambor, Ivan ;
Shnier, Ronald ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Purysko, Andrei S. ;
Verma, Sadhna ;
Ponsky, Lee ;
Stricker, Phillip ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) :818-828
[5]   ESUR prostate MR guidelines 2012 [J].
Barentsz, Jelle O. ;
Richenberg, Jonathan ;
Clements, Richard ;
Choyke, Peter ;
Verma, Sadhna ;
Villeirs, Geert ;
Rouviere, Olivier ;
Logager, Vibeke ;
Futterer, Jurgen J. .
EUROPEAN RADIOLOGY, 2012, 22 (04) :746-757
[6]   PETER PHAN: An MRI phantom for the optimisation of radiomic studies of the female pelvis [J].
Bianchini, Linda ;
Botta, Francesca ;
Origgi, Daniela ;
Rizzo, Stefania ;
Mariani, Manuel ;
Summers, Paul ;
Garcia-Polo, Pablo ;
Cremonesi, Marta ;
Lascialfari, Alessandro .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 71 :71-81
[7]   The Effect of Small Tumor Volumes on Studies of Intratumoral Heterogeneity of Tracer Uptake [J].
Brooks, Frank J. ;
Grigsby, Perry W. .
JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (01) :37-42
[8]  
Chaddad A, 2018, FRONT ONCOL, P8
[9]   Clinically significant prostate cancer detection on MRI: A radiomic shape features study [J].
Cuocolo, Renato ;
Stanzione, Arnaldo ;
Ponsiglione, Andrea ;
Romeo, Valeria ;
Verde, Francesco ;
Creta, Massimiliano ;
La Rocca, Roberto ;
Longo, Nicola ;
Pace, Leonardo ;
Imbriaco, Massimo .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 116 :144-149
[10]   Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer [J].
Donovan, J. L. ;
Hamdy, F. C. ;
Lane, J. A. ;
Mason, M. ;
Metcalfe, C. ;
Walsh, E. ;
Blazeby, J. M. ;
Peters, T. J. ;
Holding, P. ;
Bonnington, S. ;
Lennon, T. ;
Bradshaw, L. ;
Cooper, D. ;
Herbert, P. ;
Howson, J. ;
Jones, A. ;
Lyons, N. ;
Salter, E. ;
Thompson, P. ;
Tidball, S. ;
Blaikie, J. ;
Gray, C. ;
Bollina, P. ;
Catto, J. ;
Doble, A. ;
Doherty, A. ;
Gillatt, D. ;
Kockelbergh, R. ;
Kynaston, H. ;
Paul, A. ;
Powell, P. ;
Prescott, S. ;
Rosario, D. J. ;
Rowe, E. ;
Davis, M. ;
Turner, E. L. ;
Martin, R. M. ;
Neal, D. E. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (15) :1425-1437