Tuning the Fano factor of graphene via Fermi velocity modulation

被引:22
作者
Lima, Jonas R. F. [1 ]
Barbosa, Anderson L. R. [1 ]
Bezerra, C. G. [2 ]
Pereira, Luiz Felipe C. [2 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Fis, BR-52171900 Recife, PE, Brazil
[2] Univ Fed Rio Grande do Norte, Dept Fis, BR-59078970 Natal, RN, Brazil
关键词
SHOT-NOISE; MESOSCOPIC CONDUCTORS; BILAYER GRAPHENE; DIRAC FERMIONS; TRANSPORT; GAP;
D O I
10.1016/j.physe.2017.10.019
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work we investigate the influence of a Fermi velocity modulation on the Fano factor of periodic and quasi-periodic graphene superlattices. We consider the continuum model and use the transfer matrix method to solve the Dirac-like equation for graphene where the electrostatic potential, energy gap and Fermi velocity are piecewise constant functions of the position x. We found that in the presence of an energy gap, it is possible to tune the energy of the Fano factor peak and consequently the location of the Dirac point, by a modulation in the Fermi velocity. Hence, the peak of the Fano factor can be used experimentally to identify the Dirac point. We show that for higher values of the Fermi velocity the Fano factor goes below 1/3 at the Dirac point. Furthermore, we show that in periodic superlattices the location of Fano factor peaks is symmetric when the Fermi velocity vA and vB is exchanged, however by introducing quasi-periodicity the symmetry is lost. The Fano factor usually holds a universal value for a specific transport regime, which reveals that the possibility of controlling it in graphene is a notable result.
引用
收藏
页码:105 / 110
页数:6
相关论文
共 45 条
[1]   Fermi velocity renormalization in doped graphene [J].
Attaccalite, C. ;
Rubio, A. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (11-12) :2523-2526
[2]   Transport in graphene nanostructures with spatially modulated gap and potential [J].
Azarova, E. S. ;
Maksimova, G. M. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 61 :118-124
[3]   Presence of asymmetric noise in multiterminal chaotic cavities [J].
Barbosa, A. L. R. ;
Ramos, J. G. G. S. ;
Bazeia, D. .
PHYSICAL REVIEW B, 2011, 84 (11)
[4]   Quantum shot noise [J].
Beenakker, C ;
Schönenberger, C .
PHYSICS TODAY, 2003, 56 (05) :37-42
[5]   Introduction: Special issue dedicated to the memory of Markus Buttiker (1950-2013) [J].
Beenakker, Carlo ;
Jacquod, Philippe ;
Jordan, Andrew ;
Samuelsson, Peter .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 82 :1-2
[6]   SUPPRESSION OF SHOT NOISE IN METALLIC DIFFUSIVE CONDUCTORS [J].
BEENAKKER, CWJ ;
BUTTIKER, M .
PHYSICAL REVIEW B, 1992, 46 (03) :1889-1892
[7]   Shot noise in mesoscopic conductors [J].
Blanter, YM ;
Büttiker, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 336 (1-2) :1-166
[8]   Double-periodic quasi-periodic graphene superlattice: non-Bragg band gap and electronic transport [J].
Chen, Xi ;
Zhao, Pei-Liang ;
Zhu, Qi-Biao .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (01)
[9]   Control over band structure and tunneling in bilayer graphene induced by velocity engineering [J].
Cheraghchi, Hosein ;
Adinehvand, Fatemeh .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (01)
[10]   Shot noise in ballistic graphene [J].
Danneau, R. ;
Wu, F. ;
Craciun, M. F. ;
Russo, S. ;
Tomi, M. Y. ;
Salmilehto, J. ;
Morpurgo, A. F. ;
Hakonen, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (19)