Collaborative Graph Learning for Session-based Recommendation

被引:34
|
作者
Pan, Zhiqiang [1 ]
Cai, Fei [1 ]
Chen, Wanyu [1 ]
Chen, Chonghao [1 ]
Chen, Honghui [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Informat Syst Engn Lab, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Session-based recommendation; collaborative learning; graph neural networks; self-supervised learning; label confusion learning;
D O I
10.1145/3490479
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Session-based recommendation (SBR), which mainly relies on a user's limited interactions with items to generate recommendations, is a widely investigated task. Existing methods often apply RNNs or GNNs to model user's sequential behavior or transition relationship between items to capture her current preference. For training such models, the supervision signals are merely generated from the sequential interactions inside a session, neglecting the correlations of different sessions, which we argue can provide additional supervisions for learning the item representations. Moreover, previous methods mainly adopt the cross-entropy loss for training, where the user's ground truth preference distribution towards items is regarded as a one-hot vector of the target item, easily making the network over-confident and leading to a serious overfitting problem. Thus, in this article, we propose a Collaborative Graph Learning (CGL) approach for session-based recommendation. CGL first applies the Gated Graph Neural Networks (GGNNs) to learn item embeddings and then is trained by considering both the main supervision as well as the self-supervision signals simultaneously. The main supervisions are produced by the sequential order while the self-supervisions are derived from the global graph constructed by all sessions. In addition, to prevent overfitting, we propose a Target-aware Label Confusion (TLC) learning method in the main supervised component. Extensive experiments are conducted on three publicly available datasets, i.e., Retailrocket, Diginetica, and Gowalla. The experimental results show that CGL can outperform the state-of-the-art baselines in terms of Recall and MRR.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Time Series Enhanced Graph Neural Networks for Session-based Recommendation
    Li, Xiaobing
    Tang, Yan
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [42] Dynamic Graph Attention-Aware Networks for Session-Based Recommendation
    Abugabah, Ahed
    Cheng, Xiaochun
    Wang, Jianfeng
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [43] Personal Interest Attention Graph Neural Networks for Session-Based Recommendation
    Zhang, Xiangde
    Zhou, Yuan
    Wang, Jianping
    Lu, Xiaojun
    ENTROPY, 2021, 23 (11)
  • [44] Handling Information Loss of Graph Neural Networks for Session-based Recommendation
    Chen, Tianwen
    Wong, Raymond Chi-Wing
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1172 - 1180
  • [45] Exploring latent connections in graph neural networks for session-based recommendation
    Fei Cai
    Zhiqiang Pan
    Chengyu Song
    Xin Zhang
    Information Retrieval Journal, 2022, 25 : 329 - 363
  • [46] Category-aware Graph Neural Network for Session-based Recommendation
    Chen, Runfeng
    Zhu, Yanmin
    Ma, Peibo
    Chen, Qiuxia
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 891 - 899
  • [47] Semantic-enhanced Contrastive Learning for Session-based Recommendation
    Liu, Zhicheng
    Wang, Yulong
    Liu, Tongcun
    Zhang, Lei
    Li, Wei
    Liao, Jianxin
    He, Ding
    KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [48] Intent Enhanced Self-supervised Hypergraph Learning for Session-Based Recommendation
    Fang, Xiu Susie
    Wu, Yonggang
    Lu, Jinhu
    Gu, Xiaoyu
    Sun, Guohao
    Zhan, Yong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-APPLIED DATA SCIENCE TRACK, PT X, ECML PKDD 2024, 2024, 14950 : 83 - 99
  • [49] HybridGNN-SR: Combining Unsupervised and Supervised Graph Learning for Session-based Recommendation
    Deng, Kai
    Huang, Jiajin
    Qin, Jin
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 136 - 143
  • [50] CGG: Category-aware global graph contrastive learning for session-based recommendation
    Gan, Mingxin
    Zhang, Xiongtao
    Liang, Yuxin
    KNOWLEDGE-BASED SYSTEMS, 2024, 305