Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries

被引:101
|
作者
Liu, Xiaowu [1 ]
Wu, Ying [1 ]
Yang, Zhenzhong [2 ]
Pan, Fusen [1 ]
Zhong, Xiongwu [1 ]
Wang, Jiaqing [1 ]
Gu, Lin [2 ]
Yu, Yan [1 ]
机构
[1] Univ Sci & Technol China, Chinese Acad Sci, Dept Mat Sci & Engn, Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion battery; 3D graphene frameworks; N-doped; Porous; STORAGE PERFORMANCE; CARBON NANOTUBES; LI STORAGE; CAPACITY; ENERGY; COMPOSITES; SULFUR;
D O I
10.1016/j.jpowsour.2015.05.074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped 3D graphene frameworks (N-3D GFs) were synthesized by a facile two-step method: Polystyrene (PS) encapsulated in graphene oxide (GO) composites (denoted as PS@GO) are first synthesized, followed by a post-thermal annealing in ammonia step to get N-doped 3D GFs. The resulting N-3D GFs inherit the advantages of graphene, which possesses high electrical conductivity and high specific surface area. Furthermore, the well-defined 3D interconnected structure can facilitate the access of the electrolyte to the electrode surface, thus shortening the diffusion length of both keeping the overall electrode highly conductive and active in lithium storage. Simultaneously, the in-situ formation of pyridinic N and pyrrolic N in 3D GFs provide high electronic conductivity and structure stability for lithium storage. The designed N-3D GFs electrode delivers a high specific capacity of 1094 mAhg(-1) after 100 cycles at 200 mAg(-1) and superior rate capability (691 mAhg-1 after 500 cycles at 1000 mAg(-1)) when used as anode for LIBs. We believe that such an inherently inexpensive, scalable, facile method can significantly increase the feasibility of building high performance energy storage system. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:799 / 805
页数:7
相关论文
共 50 条
  • [1] High Performance Nitrogen-Doped Si/C as the Anode Material of Lithium-Ion Batteries
    Ying, Jin
    Yuan, An
    Jin, Xin
    Tan, Lian
    Tang, Hao
    Sun, Runguang
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2022, 58 (02) : 136 - 142
  • [2] High Performance Nitrogen-Doped Si/C as the Anode Material of Lithium-Ion Batteries
    An Jin Ying
    Xin Yuan
    Lian Jin
    Hao Tan
    Runguang Tang
    Russian Journal of Electrochemistry, 2022, 58 : 136 - 142
  • [3] Synthesis and Properties of Nitrogen-Doped Graphene as Anode Materials for Lithium-Ion Batteries
    Fu, Changjing
    Song, Chunlai
    Liu, Lilai
    Xie, Xuedong
    Zhao, Weiling
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (05): : 3876 - 3886
  • [4] Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries
    Xiong, Dongbin
    Li, Xifei
    Bai, Zhimin
    Shan, Hui
    Fan, Linlin
    Wu, Chunxia
    Li, Dejun
    Lu, Shigang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (12) : 10643 - 10651
  • [5] Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries
    Huang, Yanshan
    Wu, Dongqing
    Dianat, Arezoo
    Bobeth, Manferd
    Huang, Tao
    Mai, Yiyong
    Zhang, Fan
    Cuniberti, Gianaurelio
    Feng, Xinliang
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (04) : 1588 - 1594
  • [6] Fe3C-Functionalized 3D Nitrogen-Doped Porous Graphene Nanocomposites as Anode Materials for Lithium-Ion Batteries
    Cai, Haili
    Fan, Lining
    Chen, Wei
    Zheng, Hui
    Guo, Xiaoxiao
    Zheng, Peng
    Zheng, Liang
    Zhang, Yang
    ACS APPLIED NANO MATERIALS, 2023, 6 (19) : 18306 - 18317
  • [7] Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu, Yang-Xin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (39) : 16819 - 16827
  • [8] Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries
    Lee, Dong Jin
    Ryou, Myung-Hyun
    Lee, Je-Nam
    Kim, Byung Gon
    Lee, Yong Min
    Kim, Hye-Won
    Kong, Byung-Seon
    Park, Jung-Ki
    Choi, Jang Wook
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 98 - 101
  • [9] High-Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen-Doped Graphene Foams
    Xu, Jiantie
    Wang, Min
    Wickramaratne, Nilantha P.
    Jaroniec, Mietek
    Dou, Shixue
    Dai, Liming
    ADVANCED MATERIALS, 2015, 27 (12) : 2042 - 2048
  • [10] Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries
    Yuan, Guanghui
    Xiang, Jiming
    Jin, Huafeng
    Wu, Lizhou
    Jin, Yanzi
    Zhao, Yan
    MATERIALS, 2018, 11 (01):