Cost total colorings of trees

被引:0
|
作者
Isobe, S [1 ]
Zhou, X [1 ]
Nishizeki, T [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
关键词
cost total coloring; dynamic programming; matching; total coloring; tree;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A total coloring of a graph G is to color all vertices and edges of G so that no two adjacent or incident elements receive the same color. Let C be a set of colors, and let omega be a cost function which assigns to each color c in C a real number omega(c) as a cost of c. A total coloring f of G is called an optimal total coloring if the sum of costs omega(f(x)) of colors f(x) assigned to all vertices and edges x is as small as possible. In this paper, we give an algorithm to find an optimal total coloring of any tree T in time O(nDelta(3)) where n is the number of vertices in T and Delta is the maximum degree of T.
引用
收藏
页码:337 / 342
页数:6
相关论文
共 50 条
  • [1] Minimum Cost Edge-Colorings of Trees Can Be Reduced to Matchings
    Ito, Takehiro
    Sakamoto, Naoki
    Zhou, Xiao
    Nishizeki, Takao
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (02): : 190 - 195
  • [2] Nonrepetitive colorings of trees
    Bresar, B.
    Grytczuk, J.
    Klavzar, S.
    Niwczyk, S.
    Peterin, I.
    DISCRETE MATHEMATICS, 2007, 307 (02) : 163 - 172
  • [3] LOCALLY BOUNDED k-COLORINGS OF TREES
    Bentz, C.
    Picouleau, C.
    RAIRO-OPERATIONS RESEARCH, 2009, 43 (01) : 27 - 33
  • [4] Adjacent strong edge colorings and total colorings of regular graphs
    Zhang ZhongFu
    Woodall, Douglas R.
    Yao Bing
    Li JingWen
    Chen XiangEn
    Bian Liang
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 973 - 980
  • [5] Total colorings of circulant graphs
    Geetha, J.
    Somasundaram, K.
    Fu, Hung-Lin
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [6] Total colorings-a survey
    Geetha, Jayabalan
    Narayanan, Narayanan
    Somasundaram, Kanagasabapathi
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (03) : 339 - 351
  • [7] Total colorings of equibipartite graphs
    Chen, BL
    Dong, L
    Liu, QZ
    Huang, KC
    DISCRETE MATHEMATICS, 1999, 194 (1-3) : 59 - 65
  • [8] Adjacent strong edge colorings and total colorings of regular graphs
    ZhongFu Zhang
    Douglas R. Woodall
    Bing Yao
    JingWen Li
    XiangEn Chen
    Liang Bian
    Science in China Series A: Mathematics, 2009, 52 : 973 - 980
  • [9] Total Colorings of Product Graphs
    Geetha, J.
    Somasundaram, K.
    GRAPHS AND COMBINATORICS, 2018, 34 (02) : 339 - 347
  • [10] Adjacent strong edge colorings and total colorings of regular graphs
    WOODALL Douglas R
    Science China Mathematics, 2009, (05) : 973 - 980