Variable coefficient equations of the Kadomtsev-Petviashvili hierarchy: multiple soliton solutions and singular multiple soliton solutions

被引:49
作者
Jaradat, H. M. [1 ]
Al-Shara, Safwan [1 ]
Awawdeh, Fadi [2 ]
Alquran, Marwan [3 ]
机构
[1] Al al Bayt Univ, Dept Math, Mafraq 25113, Jordan
[2] Hashemite Univ, Dept Math, Zarqa 13115, Jordan
[3] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid 22110, Jordan
关键词
DE VRIES EQUATION; KP EQUATION; SYMBOLIC COMPUTATION; KDV EQUATION; GRAMMIAN SOLUTIONS; PFAFFIANIZATION; COLLISIONS;
D O I
10.1088/0031-8949/85/03/035001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an introduction to a new direct computational method for constructing multiple soliton solutions to nonlinear equations with variable coefficients in the Kadomtsev-Petviashvili (KP) hierarchy. We discuss in detail how this works for a generalized (3 + 1)-dimensional KP equation with variable coefficients. Explicit soliton, multiple soliton and singular multiple soliton solutions of the equation are obtained under certain constraints on the coefficient functions. Furthermore, the characteristic-line method is applied to discuss the solitonic propagation and collision under the effect of variable coefficients.
引用
收藏
页数:7
相关论文
共 37 条
[1]  
ANJAN B, 2009, NONLINEAR DYNAM, V58, P345
[2]  
[Anonymous], COMPUT APPL MATH 2
[3]   A generalized variable-coefficient algebraic method exactly solving (3+1)-dimensional Kadomtsev-Petviashvilli equation [J].
Bai, CL ;
Bai, CJ ;
Hong, Z .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (05) :821-826
[4]  
Chen HT, 2003, CHINESE PHYS, V12, P1202, DOI 10.1088/1009-1963/12/11/303
[5]  
DICKEY LA, 2003, SOLITON EQUATIONS HA
[6]  
EI-Sayed S M, 2004, APPL MATH COMPUT, V157, P523
[7]   New exact solutions for a generalized variable coefficients 2D KdV equation [J].
Elwakil, SA ;
El-Labany, SK ;
Zahran, MA ;
Sabry, R .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1083-1086
[8]   Symbolic methods to construct exact solutions of nonlinear partial differential equations [J].
Hereman, W ;
Nuseir, A .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (01) :13-27
[9]  
Hereman W., 1991, 13 WORLD C COMP APPL, V2, P842
[10]   EXACT SOLUTION OF MODIFIED KORTEWEG-DE VRIES EQUATION FOR MULTIPLE COLLISIONS OF SOLITONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (05) :1456-1458