Infinity norm upper bounds for the inverse of S DD1 matrices

被引:9
|
作者
Chen, Xiaoyong [1 ]
Li, Yating [1 ]
Liu, Liang [1 ]
Wang, Yaqiang [1 ]
机构
[1] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
关键词
S DD1 matrices; S DD matrices; upper bound; positive diagonal matrix; infinity norm;
D O I
10.3934/math.2022493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new proof that S DD1 matrices is a subclass of H-matrices is presented, and some properties of S DD1 matrices are obtained. Based on the new proof, some upper bounds of the infinity norm of inverse of S DD1 matrices and S DD matrices are given. Moreover, we show that these new bounds of S DD matrices are better than the well-known Varah bound for S DD matrices in some cases. In addition, some numerical examples are given to illustrate the corresponding results.
引用
收藏
页码:8847 / 8860
页数:14
相关论文
共 32 条
  • [1] Infinity norm upper bounds for the inverse of S DDk matrices
    Wang, Xiaodong
    Wang, Feng
    AIMS MATHEMATICS, 2023, 8 (10): : 24999 - 25016
  • [2] Infinity norm bounds for the inverse of Nekrasov matrices
    Cvetkovic, Ljiljana
    Dai, Ping-Fan
    Doroslovacki, Ksenija
    Li, Yao-Tang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5020 - 5024
  • [3] Error bounds for linear complementarity problems of S DD1 matrices and S DD1-B matrices
    Zhao, Yingxia
    Liu, Lanlan
    Wang, Feng
    AIMS MATHEMATICS, 2022, 7 (07): : 11862 - 11878
  • [4] Two infinity norm bounds for the inverse of Nekrasov matrices
    Wang, Shiyun
    Liang, Xiaonan
    Zhou, Yanming
    Lyu, Zhen-Hua
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (10) : 1643 - 1656
  • [5] Upper triangulation-based infinity norm bounds for the inverse of Nekrasov matrices with applications
    Gao, Lei
    Gu, Xian-Ming
    Jia, Xiudan
    Li, Chaoqian
    NUMERICAL ALGORITHMS, 2024, 97 (04) : 1453 - 1479
  • [6] Infinity norm bounds for the inverse for GSDD1 matrices using scaling matrices
    Dai, Ping-Fan
    Li, Jinping
    Zhao, Shaoyu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (03)
  • [7] NEW UPPER BOUNDS FOR THE INFINITY NORM OF NEKRASOV MATRICES
    Gao, Lei
    Liu, Qilong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 723 - 733
  • [8] Infinity Norm Bounds for the Inverse of SDD1-Type Matrices with Applications
    Geng, Yuanjie
    Zhu, Yuxue
    Zhang, Fude
    Wang, Feng
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025,
  • [9] Schur Complement-Based Infinity Norm Bounds for the Inverse of SDD Matrices
    Li, Chaoqian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3829 - 3845
  • [10] Schur Complement-Based Infinity Norm Bounds for the Inverse of SDD Matrices
    Chaoqian Li
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3829 - 3845