Infinity norm upper bounds for the inverse of S DD1 matrices

被引:12
作者
Chen, Xiaoyong [1 ]
Li, Yating [1 ]
Liu, Liang [1 ]
Wang, Yaqiang [1 ]
机构
[1] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
关键词
S DD1 matrices; S DD matrices; upper bound; positive diagonal matrix; infinity norm;
D O I
10.3934/math.2022493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new proof that S DD1 matrices is a subclass of H-matrices is presented, and some properties of S DD1 matrices are obtained. Based on the new proof, some upper bounds of the infinity norm of inverse of S DD1 matrices and S DD matrices are given. Moreover, we show that these new bounds of S DD matrices are better than the well-known Varah bound for S DD matrices in some cases. In addition, some numerical examples are given to illustrate the corresponding results.
引用
收藏
页码:8847 / 8860
页数:14
相关论文
共 15 条
[1]  
[Anonymous], 1994, Classics in Applied Mathematics
[2]   Subdirect Sums of SDD1 Matrices [J].
Chen, Xiaoyong ;
Wang, Yaqiang .
JOURNAL OF MATHEMATICS, 2020, 2020
[3]   Max-norm bounds for the inverse of S-Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9498-9503
[4]   A note on diagonal dominance, Schur complements and some classes of H-matrices and P-matrices [J].
Dai, Ping-Fan .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (01) :1-4
[5]   NEW UPPER BOUNDS FOR THE INFINITY NORM OF NEKRASOV MATRICES [J].
Gao, Lei ;
Liu, Qilong .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03) :723-733
[6]  
Kolotilina L. Y., 2019, J. Math. Sci, V240, P799, DOI [/10.1007 /s10958-019-04397-5, DOI 10.1007/S10958-019-04397-5]
[7]  
Kolotilina L. Y., 2015, J. Math. Sci., V207, P786, DOI [10.1007 /s10958-015-2401-x, DOI 10.1007/S10958-015-2401-X]
[8]  
Kolotilina L. Y., 2020, J MATH SCI-U TOKYO, V249, P221, DOI 10.1007 s10958-020-04936-5 // / /
[9]  
Kolotilina L. Y, 2020, J MATH SCI-U TOKYO, V249, P242, DOI 10.1007 s10958-020-04938-3
[10]  
Kolotilina L. Y., 2014, J. Math. Sci., V199, P432, DOI [10.1007/s10958-014-1870-7, DOI 10.1007/S10958-014-1870-7]