Runaway electron generation during plasma shutdown by killer pellet injection

被引:22
作者
Gal, K. [1 ]
Feher, T. [1 ]
Smith, H. [2 ]
Fulop, T. [3 ]
Helander, P. [4 ]
机构
[1] EURATOM, KFKI RMKI, Budapest, Hungary
[2] Univ Warwick, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
[3] Chalmers Univ Technol, Dept Radio & Space Sci, Gothenburg, Sweden
[4] Max Planck Inst Plasma Phys, Greifswald, Germany
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0741-3335/50/5/055006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Tokamak discharges are sometimes terminated by disruptions that may cause large mechanical and thermal loads on the vessel. To mitigate disruption-induced problems it has been proposed that 'killer' pellets could be injected into the plasma in order to safely terminate the discharge. Killer pellets enhance radiative energy loss and thereby lead to rapid cooling and shutdown of the discharge. But pellets may also cause runaway electron generation, as has been observed in experiments in several tokamaks. In this work, runaway dynamics in connection with deuterium or carbon pellet-induced fast plasma shutdown is considered. A pellet code, which calculates the material deposition and initial cooling caused by the pellet is coupled to a runaway code, which determines the subsequent temperature evolution and runaway generation. In this way, a tool has been created to test the suitability of different pellet injection scenarios for disruption mitigation. If runaway generation is avoided, the resulting current quench times are too long to safely avoid large forces on the vessel due to halo currents.
引用
收藏
页数:15
相关论文
共 37 条
[1]   Damping of relativistic electron beams by synchrotron radiation [J].
Andersson, F ;
Helander, P ;
Eriksson, LG .
PHYSICS OF PLASMAS, 2001, 8 (12) :5221-5229
[2]   Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks [J].
Bakhtiari, M ;
Kramer, GJ ;
Takechi, M ;
Tamai, H ;
Miura, Y ;
Kusama, Y ;
Kamada, Y .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[3]   Fokker-Planck simulations of knock-on electron runaway avalanche and bursts in tokamaks [J].
Chiu, SC ;
Rosenbluth, MN ;
Harvey, RW ;
Chan, VS .
NUCLEAR FUSION, 1998, 38 (11) :1711-1721
[4]   Destabilization of fast-ion-induced long sawteeth by localized current drive in the JET tokamak [J].
Eriksson, LG ;
Mueck, A ;
Sauter, O ;
Coda, S ;
Mantsinen, MJ ;
Mayoral, ML ;
Westerhof, E ;
Buttery, RJ ;
McDonald, D ;
Johnson, T ;
Noterdaeme, JM ;
de Vries, P .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :235004-1
[5]   Simulation of runaway electrons during tokamak disruptions [J].
Eriksson, LG ;
Helander, P .
COMPUTER PHYSICS COMMUNICATIONS, 2003, 154 (03) :175-196
[6]  
GAL K, 2005, P 32 EPS C CONTR F C, V29
[7]   Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model [J].
Harvey, RW ;
Chan, VS ;
Chiu, SC ;
Evans, TE ;
Rosenbluth, MN ;
Whyte, DG .
PHYSICS OF PLASMAS, 2000, 7 (11) :4590-4599
[8]   Suppression of runaway electron avalanches by radial diffusion [J].
Helander, P ;
Eriksson, LG ;
Andersson, F .
PHYSICS OF PLASMAS, 2000, 7 (10) :4106-4111
[9]   Chapter 3:: MHD stability, operational limits and disruptions [J].
Hender, T. C. ;
Wesley, J. C. ;
Bialek, J. ;
Bondeson, A. ;
Boozer, A. H. ;
Buttery, R. J. ;
Garofalo, A. ;
Goodman, T. P. ;
Granetz, R. S. ;
Gribov, Y. ;
Gruber, O. ;
Gryaznevich, M. ;
Giruzzi, G. ;
Guenter, S. ;
Hayashi, N. ;
Helander, P. ;
Hegna, C. C. ;
Howell, D. F. ;
Humphreys, D. A. ;
Huysmans, G. T. A. ;
Hyatt, A. W. ;
Isayama, A. ;
Jardin, S. C. ;
Kawano, Y. ;
Kellman, A. ;
Kessel, C. ;
Koslowski, H. R. ;
La Haye, R. J. ;
Lazzaro, E. ;
Liu, Y. Q. ;
Lukash, V. ;
Manickam, J. ;
Medvedev, S. ;
Mertens, V. ;
Mirnov, S. V. ;
Nakamura, Y. ;
Navratil, G. ;
Okabayashi, M. ;
Ozeki, T. ;
Paccagnella, R. ;
Pautasso, G. ;
Porcelli, F. ;
Pustovitov, V. D. ;
Riccardo, V. ;
Sato, M. ;
Sauter, O. ;
Schaffer, M. J. ;
Shimada, M. ;
Sonato, P. ;
Strait, E. J. .
NUCLEAR FUSION, 2007, 47 (06) :S128-S202
[10]  
HUBA JD, 2007, NRL PLASMA PHYS FORM