Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing

被引:185
作者
John, Rohit Abraham [1 ,2 ]
Demirag, Yigit [3 ,4 ]
Shynkarenko, Yevhen [1 ,2 ]
Berezovska, Yuliia [1 ,2 ]
Ohannessian, Natacha [1 ,5 ]
Payvand, Melika [3 ,4 ]
Zeng, Peng [6 ]
Bodnarchuk, Maryna, I [1 ,2 ]
Krumeich, Frank [1 ]
Kara, Goekhan [2 ]
Shorubalko, Ivan [2 ]
Nair, Manu, V [7 ]
Cooke, Graham A. [8 ]
Lippert, Thomas [1 ,5 ]
Indiveri, Giacomo [3 ,4 ]
Kovalenko, Maksym, V [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Inst Inorgan Chem, CH-8093 Zurich, Switzerland
[2] Empa Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland
[3] Univ Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
[4] Swiss Fed Inst Technol, CH-8057 Zurich, Switzerland
[5] Paul Scherrer Inst, Lab Multiscale Mat Expt, CH-5232 Villigen, Switzerland
[6] Swiss Fed Inst Technol, Sci Ctr Opt & Electron Microscopy ScopeM, CH-8093 Zurich, Switzerland
[7] Synthara AG, Dammstr 16, CH-6300 Zug, Switzerland
[8] Hiden Analyt Ltd, Warrington WA5 7UN, Cheshire, England
关键词
PLASTICITY; DEVICES;
D O I
10.1038/s41467-022-29727-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many in-memory computing frameworks demand electronic devices with specific switching characteristics to achieve the desired level of computational complexity. Existing memristive devices cannot be reconfigured to meet the diverse volatile and non-volatile switching requirements, and hence rely on tailored material designs specific to the targeted application, limiting their universality. "Reconfigurable memristors" that combine both ionic diffusive and drift mechanisms could address these limitations, but they remain elusive. Here we present a reconfigurable halide perovskite nanocrystal memristor that achieves on-demand switching between diffusive/volatile and drift/non-volatile modes by controllable electrochemical reactions. Judicious selection of the perovskite nanocrystals and organic capping ligands enable state-of-the-art endurance performances in both modes - volatile (2 x 10(6) cycles) and non-volatile (5.6 x 10(3) cycles). We demonstrate the relevance of such proof-of-concept perovskite devices on a benchmark reservoir network with volatile recurrent and non-volatile readout layers based on 19,900 measurements across 25 dynamically-configured devices. Existing memristors cannot be reconfigured to meet the diverse switching requirements of various computing frameworks, limiting their universality. Here, the authors present a nanocrystal memristor that can be reconfigured on-demand to address these limitations
引用
收藏
页数:10
相关论文
共 69 条
[1]   The coexistence of threshold and memory switching characteristics of ALD HfO2memristor synaptic arrays for energy-efficient neuromorphic computing [J].
Abbas, Haider ;
Abbas, Yawar ;
Hassan, Gul ;
Sokolov, Andrey Sergeevich ;
Jeon, Yu-Rim ;
Ku, Boncheol ;
Kang, Chi Jung ;
Choi, Changhwan .
NANOSCALE, 2020, 12 (26) :14120-14134
[2]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[3]   A solution to the learning dilemma for recurrent networks of spiking neurons [J].
Bellec, Guillaume ;
Scherr, Franz ;
Subramoney, Anand ;
Hajek, Elias ;
Salaj, Darjan ;
Legenstein, Robert ;
Maass, Wolfgang .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Emulating short-term synaptic dynamics with memristive devices [J].
Berdan, Radu ;
Vasilaki, Eleni ;
Khiat, Ali ;
Indiveri, Giacomo ;
Serb, Alexandru ;
Prodromakis, Themistoklis .
SCIENTIFIC REPORTS, 2016, 6
[5]   Neuromorphic computing with multi-memristive synapses [J].
Boybat, Irem ;
Le Gallo, Manuel ;
Nandakumar, S. R. ;
Moraitis, Timoleon ;
Parnell, Thomas ;
Tuma, Tomas ;
Rajendran, Bipin ;
Leblebici, Yusuf ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2018, 9
[6]   Learning through ferroelectric domain dynamics in solid-state synapses [J].
Boyn, Soeren ;
Grollier, Julie ;
Lecerf, Gwendal ;
Xu, Bin ;
Locatelli, Nicolas ;
Fusil, Stephane ;
Girod, Stephanie ;
Carretero, Cecile ;
Garcia, Karin ;
Xavier, Stephane ;
Tomas, Jean ;
Bellaiche, Laurent ;
Bibes, Manuel ;
Barthelemy, Agnes ;
Saighi, Sylvain ;
Garcia, Vincent .
NATURE COMMUNICATIONS, 2017, 8
[7]   Neuromorphic computing using non-volatile memory [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sebastian, Abu ;
Kim, Sangbum ;
Kim, Seyoung ;
Sidler, Severin ;
Virwani, Kumar ;
Ishii, Masatoshi ;
Narayanan, Pritish ;
Fumarola, Alessandro ;
Sanches, Lucas L. ;
Boybat, Irem ;
Le Gallo, Manuel ;
Moon, Kibong ;
Woo, Jiyoo ;
Hwang, Hyunsang ;
Leblebici, Yusuf .
ADVANCES IN PHYSICS-X, 2017, 2 (01) :89-124
[8]   Highly Uniform All-Vacuum-Deposited Inorganic Perovskite Artificial Synapses for Reservoir Computing [J].
Chen, Li-Wei ;
Wang, Wei-Chun ;
Ko, Shao-Han ;
Chen, Chien-Yu ;
Hsu, Chih-Ting ;
Chiao, Fu-Ching ;
Chen, Tse-Wei ;
Wu, Kai-Chiang ;
Lin, Hao-Wu .
ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (01)
[9]   Molecular Mechanisms of Short-Term Plasticity: Role of Synapsin Phosphorylation in Augmentation and Potentiation of Spontaneous Glutamate Release [J].
Cheng, Qing ;
Song, Sang-Ho ;
Augustine, George J. .
FRONTIERS IN SYNAPTIC NEUROSCIENCE, 2018, 10
[10]   A recipe for creating ideal hybrid memristive-CMOS neuromorphic processing systems [J].
Chicca, E. ;
Indiveri, G. .
APPLIED PHYSICS LETTERS, 2020, 116 (12)