Hybrid-Piezoelectret Based Highly Efficient Ultrasonic Energy Harvester for Implantable Electronics

被引:56
作者
Wan, Xiao [1 ]
Chen, Ping [2 ]
Xu, Zisheng [1 ,3 ]
Mo, Xiwei [1 ]
Jin, Hongrun [1 ]
Yang, Wei [1 ]
Wang, Shuixiang [1 ]
Duan, Jiangjiang [1 ]
Hu, Bin [1 ]
Luo, Zhiqiang [2 ]
Huang, Liang [1 ]
Zhou, Jun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Natl Engn Res Ctr Nanomed, Wuhan 430074, Peoples R China
[3] Zhejiang Normal Univ, Coll Engn, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
hybrid-piezoelectret; implantable electronics; neuroprosthetics; ultrasound energy harvester; wireless power supply; POWER MANAGEMENT; 1-3; COMPOSITES; DRIVEN; STIMULATION; EXPOSURE; STRATEGY;
D O I
10.1002/adfm.202200589
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Implantable ultrasonic energy harvesters that scavenge wireless mechanic energy from ultrasound own remarkable potential in advanced medical protocols for neuroprosthetics, wireless power, biosensor, etc. The main challenge for this kind of device is to achieve high-efficiency energy conversion in a weak ultrasonic pressure field. Here, a multilayered piezoelectret with strain enhanced piezoelectricity by introducing a parallel-connected air hole array in an interdielectric layer sandwiched between a pair of electrets for an efficient ultrasonic energy harvester is presented. This device delivers a remarkable peak output power around 13.13 mW and short-circuits current around 2.2 mA when implanted into tissues at 5-10 mm under an ultrasonic probe setup at 25 mW cm(-2), which is higher than the required power threshold of bioelectronic devices and current threshold of nerve stimulation. Furthermore, the feasibility of supplying power to implantable bioelectronics and working as neuroproteins for peripheral nerve stimulation are both demonstrated. It is anticipated that this highly efficient, easily fabricated, and biocompatible device will potentially enable applications for multifunctional and advanced implantable bioelectronics in the next generation of diagnosis and therapy.
引用
收藏
页数:12
相关论文
共 59 条
[1]   Rationale and derivation of Mi and Ti - A review [J].
Abbott, JG .
ULTRASOUND IN MEDICINE AND BIOLOGY, 1999, 25 (03) :431-441
[2]   Simulation of exposure and SAR estimation for adult and child heads exposed to radiofrequency energy from portable communication devices [J].
Bit-Babik, G ;
Guy, AW ;
Chou, CK ;
Faraone, A ;
Kanda, M ;
Gessner, A ;
Wang, J ;
Fujiwara, O .
RADIATION RESEARCH, 2005, 163 (05) :580-590
[3]  
BOYLE WS, 1955, PHYS REV, V97, P255, DOI 10.1103/PhysRev.97.255
[4]  
Center for Devices and Radiological Health, 2019, FDA2017D5372
[5]   SIMPLE-MODEL FOR PIEZOELECTRIC CERAMIC POLYMER 1-3 COMPOSITES USED IN ULTRASONIC TRANSDUCER APPLICATIONS [J].
CHAN, HLW ;
UNSWORTH, J .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1989, 36 (04) :434-441
[6]   Ultrasound-driven electrical stimulation of peripheral nerves based on implantable piezoelectric thin film nanogenerators [J].
Chen, Ping ;
Wu, Ping ;
Wan, Xiao ;
Wang, Qiong ;
Xu, Chao ;
Yang, Ming ;
Feng, Jiexiong ;
Hu, Bin ;
Luo, Zhiqiang .
NANO ENERGY, 2021, 86
[7]   Power management and effective energy storage of pulsed output from triboelectric nanogenerator [J].
Cheng, Xiaoliang ;
Tang, Wei ;
Song, Yu ;
Chen, Haotian ;
Zhang, Haixia ;
Wang, Zhong Lin .
NANO ENERGY, 2019, 61 :517-532
[8]   High Efficiency Power Management and Charge Boosting Strategy for a Triboelectric Nanogenerator [J].
Cheng, Xiaoliang ;
Miao, Liming ;
Song, Yu ;
Su, Zongming ;
Chen, Haotian ;
Chen, Xuexian ;
Zhang, Jinxin ;
Zhang, Haixia .
NANO ENERGY, 2017, 38 :448-456
[9]   Fully implantable and bioresorbable cardiac pacemakers without leads or batteries [J].
Choi, Yeon Sik ;
Yin, Rose T. ;
Pfenniger, Anna ;
Koo, Jahyun ;
Avila, Raudel ;
Benjamin Lee, K. ;
Chen, Sheena W. ;
Lee, Geumbee ;
Li, Gang ;
Qiao, Yun ;
Murillo-Berlioz, Alejandro ;
Kiss, Alexi ;
Han, Shuling ;
Lee, Seung Min ;
Li, Chenhang ;
Xie, Zhaoqian ;
Chen, Yu-Yu ;
Burrell, Amy ;
Geist, Beth ;
Jeong, Hyoyoung ;
Kim, Joohee ;
Yoon, Hong-Joon ;
Banks, Anthony ;
Kang, Seung-Kyun ;
Zhang, Zheng Jenny ;
Haney, Chad R. ;
Sahakian, Alan Varteres ;
Johnson, David ;
Efimova, Tatiana ;
Huang, Yonggang ;
Trachiotis, Gregory D. ;
Knight, Bradley P. ;
Arora, Rishi K. ;
Efimov, Igor R. ;
Rogers, John A. .
NATURE BIOTECHNOLOGY, 2021, 39 (10) :1228-+
[10]   Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration [J].
Choi, Yeon Sik ;
Hsueh, Yuan-Yu ;
Koo, Jahyun ;
Yang, Quansan ;
Avila, Raudel ;
Hu, Buwei ;
Xie, Zhaoqian ;
Lee, Geumbee ;
Ning, Zheng ;
Liu, Claire ;
Xu, Yameng ;
Lee, Young Joong ;
Zhao, Weikang ;
Fang, Jun ;
Deng, Yujun ;
Lee, Seung Min ;
Vazquez-Guardado, Abraham ;
Stepien, Iwona ;
Yan, Ying ;
Song, Joseph W. ;
Haney, Chad ;
Oh, Yong Suk ;
Liu, Wentai ;
Yun, Hong-Joon ;
Banks, Anthony ;
MacEwan, Matthew R. ;
Ameer, Guillermo A. ;
Ray, Wilson Z. ;
Huang, Yonggang ;
Xie, Tao ;
Franz, Colin K. ;
Li, Song ;
Rogers, John A. .
NATURE COMMUNICATIONS, 2020, 11 (01)