Uncertainty quantification for ecological models with random parameters

被引:10
作者
Reimer, Jody R. [1 ,2 ]
Adler, Frederick R. [1 ,2 ]
Golden, Kenneth M. [1 ]
Narayan, Akil [1 ,3 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Utah, Sch Biol Sci, Salt Lake City, UT 84112 USA
[3] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
aleatory uncertainty; bloom dynamics; epistemic uncertainty; global sensitivity; Jensen's inequality; polynomial chaos; random parameters; sea ice algae; uncertainty quantification; SEA-ICE ALGAE; HORIZONTAL PATCHINESS; SPATIAL VARIABILITY; POLYNOMIAL CHAOS; EPIDEMIC MODELS; BIOMASS; GROWTH; SNOW; LIGHT;
D O I
10.1111/ele.14095
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
There is often considerable uncertainty in parameters in ecological models. This uncertainty can be incorporated into models by treating parameters as random variables with distributions, rather than fixed quantities. Recent advances in uncertainty quantification methods, such as polynomial chaos approaches, allow for the analysis of models with random parameters. We introduce these methods with a motivating case study of sea ice algal blooms in heterogeneous environments. We compare Monte Carlo methods with polynomial chaos techniques to help understand the dynamics of an algal bloom model with random parameters. Modelling key parameters in the algal bloom model as random variables changes the timing, intensity and overall productivity of the modelled bloom. The computational efficiency of polynomial chaos methods provides a promising avenue for the broader inclusion of parametric uncertainty in ecological models, leading to improved model predictions and synthesis between models and data.
引用
收藏
页码:2232 / 2244
页数:13
相关论文
共 69 条
  • [1] Effects of subgrid-scale snow thickness variability on radiative transfer in sea ice
    Abraham, Carsten
    Steiner, Nadja
    Monahan, Adam
    Michel, Christine
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120 (08) : 5597 - 5614
  • [2] Control with uncertain data of socially structured compartmental epidemic models
    Albi, Giacomo
    Pareschi, Lorenzo
    Zanella, Mattia
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 82 (07)
  • [3] Arrigo K.R., 2017, SEA ICE, P352, DOI [10.1002/9781118778371.ch14, DOI 10.1002/9781118778371.CH14]
  • [4] Hyperbolic compartmental models for epidemic spread on networks with uncertain data: Application to the emergence of COVID-19 in Italy
    Bertaglia, Giulia
    Pareschi, Lorenzo
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (12) : 2495 - 2531
  • [5] Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty
    Bertaglia, Giulia
    Boscheri, Walter
    Dimarco, Giacomo
    Pareschi, Lorenzo
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 7028 - 7059
  • [6] Export of Algal Biomass from the Melting Arctic Sea Ice
    Boetius, Antje
    Albrecht, Sebastian
    Bakker, Karel
    Bienhold, Christina
    Felden, Janine
    Fernandez-Mendez, Mar
    Hendricks, Stefan
    Katlein, Christian
    Lalande, Catherine
    Krumpen, Thomas
    Nicolaus, Marcel
    Peeken, Ilka
    Rabe, Benjamin
    Rogacheva, Antonina
    Rybakova, Elena
    Somavilla, Raquel
    Wenzhoefer, Frank
    [J]. SCIENCE, 2013, 339 (6126) : 1430 - 1432
  • [7] Improvement of random coefficient differential models of growth of anaerobic photosynthetic bacteria by combining Bayesian inference and gPC
    Calatayud, Julia
    Cortes, Juan Carlos
    Jornet, Marc
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (14) : 7885 - 7904
  • [8] Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC
    Calatayud, Julia
    Carlos Cortes, Juan
    Jornet, Marc
    Jacinto Villanueva, Rafael
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9618 - 9627
  • [9] Uncertainty quantification of the effects of biotic interactions on community dynamics from nonlinear time-series data
    Cenci, Simone
    Saavedra, Serguei
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (147)
  • [10] Epidemic models with random coefficients
    Chen-Charpentier, Benito M.
    Stanescu, Dan
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (7-8) : 1004 - 1010