A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making

被引:21
作者
Balasubramani, Pragathi P. [1 ]
Chakravarthy, V. Srinivasa [1 ]
Ravindran, Balaraman [2 ]
Moustafa, Ahmed A. [3 ,4 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Madras 600036, Tamil Nadu, India
[2] Indian Inst Technol, Dept Comp Sci & Engn, Madras 600036, Tamil Nadu, India
[3] Univ Western Sydney, Sch Social Sci & Technol, Marcs Inst Brain & Behav, Penrith, NSW 1797, Australia
[4] New Jersey Hlth Care Syst, Dept Vet Affairs, E Orange, NJ USA
关键词
serotonin; dopamine; basal ganglia network; risk; reward; punishment; medium spiny neurons; D1 and D2 receptor co-expression; D1-D2 RECEPTOR HETEROMER; MEDIUM SPINY NEURONS; PARKINSONS-DISEASE; STRIATAL NEURONS; PREDICTION ERROR; DORSAL RAPHE; FUNCTIONAL-ORGANIZATION; TRYPTOPHAN DEPLETION; INDIRECT PATHWAYS; GENE-EXPRESSION;
D O I
10.3389/fncom.2015.00076
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is significant evidence that in addition to reward-punishment based decision making, the Basal Ganglia (BG) contributes to risk-based decision making (Balasubramani et at, 2014). Despite this evidence, little is known about the computational principles and neural correlates of risk computation in this subcortical system. We have previously proposed a reinforcement learning (RL)-based model of the BG that simulates the interactions between dopamine (DA) and serotonin (5HT) in a diverse set of experimental studies including reward, punishment and risk based decision making (Balasubramani et al., 2014). Starting with the classical idea that the activity of mesencephalic DA represents reward prediction error, the model posits that serotoninergic activity in the striatum controls risk-prediction error. Our prior model of the BG was an abstract model that did not incorporate anatomical and cellular-level data. In this work, we expand the earlier model into a detailed network model of the BG and demonstrate the joint contributions of DA-5HT in risk and reward-punishment sensitivity. At the core of the proposed network model is the following insight regarding cellular correlates of value and risk computation. Just as DA D1 receptor (D1R) expressing medium spiny neurons (MSNs) of the striatum were thought to be the neural substrates for value computation, we propose that DA D1R and D2R co-expressing MSNs are capable of computing risk. Though the existence of MSNs that co-express D1R and D2R are reported by various experimental studies, prior existing computational models did not include them. Ours is the first model that accounts for the computational possibilities of these co-expressing D1R-D2R MSNs, and describes how DA and 5HT mediate activity in these classes of neurons (D1R-, D2R-, D1R-D2R-MSNs). Starting from the assumption that 5HT modulates all MSNs, our study predicts significant modulatory effects of 5HT on D2R and co-expressing D1R-D2R MSNs which in turn explains the multifarious functions of 5HT in the BG. The experiments simulated in the present study relates 5HT to risk sensitivity and reward-punishment learning. Furthermore, our model is shown to capture reward-punishment and risk based decision making impairment in Parkinson's Disease (PD). The model predicts that optimizing 5HT levels along with DA medications might be essential for improving the patients' reward-punishment learning deficits.
引用
收藏
页数:21
相关论文
共 121 条
[1]   SEROTONERGIC AND NON-SEROTONERGIC NEURONS OF DORSAL RAPHE - RECIPROCAL CHANGES IN FIRING INDUCED BY PERIPHERAL-NERVE STIMULATION [J].
AGHAJANIAN, GK ;
WANG, RY ;
BARABAN, J .
BRAIN RESEARCH, 1978, 153 (01) :169-175
[2]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[3]   Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission [J].
Alex, K. D. ;
Pehek, E. A. .
PHARMACOLOGY & THERAPEUTICS, 2007, 113 (02) :296-320
[4]   Coexpressed D1-and D2-Like Dopamine Receptors Antagonistically Modulate Acetylcholine Release in Caenorhabditis elegans [J].
Allen, Andrew T. ;
Maher, Kathryn N. ;
Wani, Khursheed A. ;
Betts, Katherine E. ;
Chase, Daniel L. .
GENETICS, 2011, 188 (03) :579-U153
[5]   Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments [J].
Amemori, Ken-ichi ;
Gibb, Leif G. ;
Graybiel, Ann M. .
FRONTIERS IN HUMAN NEUROSCIENCE, 2011, 5 :1
[6]  
[Anonymous], 2024, P INT SCI CONFERENCE
[7]  
[Anonymous], 1998, Reinforcement Learning: An Introduction
[8]   Dopamine receptor mRNA and protein expression in the mouse corpus striatum and cerebral cortex during pre- and postnatal development [J].
Araki, Kiyomi Y. ;
Sims, John R. ;
Bhide, Pradeep G. .
BRAIN RESEARCH, 2007, 1156 :31-45
[9]   Cortical and basal ganglia contributions to habit learning and automaticity [J].
Ashby, F. Gregory ;
Turner, Benjamin O. ;
Horvitz, Jon C. .
TRENDS IN COGNITIVE SCIENCES, 2010, 14 (05) :208-215
[10]   An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance [J].
Aston-Jones, G ;
Cohen, JD .
ANNUAL REVIEW OF NEUROSCIENCE, 2005, 28 :403-450