The Cost-Based Feature Selection Model for Coronary Heart Disease Diagnosis System Using Deep Neural Network

被引:3
作者
Wiharto [1 ]
Suryani, Esti [1 ]
Setyawan, Sigit [2 ]
Putra, Bintang Pe [1 ]
机构
[1] Univ Sebelas Maret, Dept Informat, Surakarta 57126, Indonesia
[2] Univ Sebelas Maret, Dept Med, Surakarta 57126, Indonesia
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Feature extraction; Costs; Biological cells; Diseases; Data models; Heart; Genetic algorithms; Coronary artery disease; genetic algorithm; feature selection; deep neural network; machine learning; ARTERY-DISEASE; PREDICTION; ALGORITHM; RISK;
D O I
10.1109/ACCESS.2022.3158752
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The development of feature selection models in intelligence systems for the diagnosis of coronary heart disease has been widely carried out. One of the developments that have been carried out is to minimize the number of inspections carried out. Unfortunately, many features selection models do not consider the cost of inspection, so the result of feature selection is an average inspection that requires high costs. This study proposes an intelligence system model for the diagnosis of coronary heart disease using a feature selection model that considers the cost of the examination. Feature selection is developed using a genetic algorithm and support vector machine. Decision-making of the diagnosis system is carried out using a deep neural network, with system performance being measured using the parameters of accuracy, sensitivity, positive predictive value, and area under the curve (AUC). The test results use the z-Alizadeh sani model feature selection dataset which produces 5 features out of 54 existing features. The use of these 5 features can produce AUC performance of 93.7%, accuracy of 87.7%, and sensitivity of 87.7%. Referring to the resulting performance, it shows that the feature selection model by considering the cost of an inspection can provide performance in the very good category.
引用
收藏
页码:29687 / 29697
页数:11
相关论文
共 50 条
  • [21] An Efficient Image Based Feature Extraction and Feature Selection Model for Medical Data Clustering Using Deep Neural Networks
    Ahmed, Mohammed Zaheer
    Mahesh, Chitraivel
    TRAITEMENT DU SIGNAL, 2021, 38 (04) : 1141 - 1148
  • [22] A hybrid method for heart disease diagnosis utilizing feature selection based ensemble classifier model generation
    Jafar Abdollahi
    Babak Nouri-Moghaddam
    Iran Journal of Computer Science, 2022, 5 (3) : 229 - 246
  • [23] Breast cancer diagnosis from mammographic images using optimized feature selection and neural network architecture
    Shivhare, Ekta
    Saxena, Vineeta
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (01) : 253 - 269
  • [24] Heart Disease Prediction Using Deep Neural Network
    Ramprakash, P.
    Sarumathi, R.
    Mowriya, R.
    Nithyavishnupriya, S.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 666 - 670
  • [25] A Fault Diagnosis Model for Tennessee Eastman Processes Based on Feature Selection and Probabilistic Neural Network
    Xu, Haoxiang
    Ren, Tongyao
    Mo, Zhuangda
    Yang, Xiaohui
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [26] Comparative Study of Optimum Medical Diagnosis of Human Heart Disease Using Machine Learning Technique With and Without Sequential Feature Selection
    Ahmad, Ghulab Nabi
    Shafiullah
    Algethami, Abdullah
    Fatima, Hira
    Akhter, Syed Md Humayun
    IEEE ACCESS, 2022, 10 : 23808 - 23828
  • [27] Fault diagnosis for machinery based on feature selection and probabilistic neural network
    Li H.
    Zhao J.
    Zhang X.
    Ni X.
    Li, Haiping (hp_li@hotmail.com), 1600, Totem Publishers Ltd (13): : 1165 - 1170
  • [28] A Neural Network Model Compression Approach Based on Deep Feature Map Transfer
    Guo, Zhibo
    Yao, Xin
    Xu, Yixuan
    Zhang, Ying
    Wang, Linghao
    IEEE ACCESS, 2020, 8 : 158026 - 158035
  • [29] Diagnosis of coronary heart disease based on 1H NMR spectra of human blood plasma using genetic algorithm-based feature selection
    Vasighi, Mahdi
    Zahraei, Ali
    Bagheri, Saeed
    Vafaeimanesh, Jamshid
    JOURNAL OF CHEMOMETRICS, 2013, 27 (10) : 318 - 322
  • [30] Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
    Al-Mahdi, Iman S.
    Darwish, Saad M.
    Madbouly, Magda M.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2025,