Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting

被引:195
作者
Murr, L. E. [1 ,2 ]
Amato, K. N. [1 ,2 ]
Li, S. J. [4 ]
Tian, Y. X. [4 ]
Cheng, X. Y. [4 ]
Gaytan, S. M. [1 ,2 ]
Martinez, E. [1 ,2 ]
Shindo, P. W. [1 ,2 ]
Medina, F. [2 ]
Wicker, R. B. [2 ,3 ]
机构
[1] Univ Texas El Paso, Dept Met & Mat Engn, El Paso, TX 79968 USA
[2] Univ Texas El Paso, WM Keck Ctr Innovat 3D, El Paso, TX 79968 USA
[3] Univ Texas El Paso, Dept Mech Engn, El Paso, TX 79968 USA
[4] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
关键词
TITANIUM-ALLOYS; SCAFFOLDS; FOAMS;
D O I
10.1016/j.jmbbm.2011.05.010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily alpha-phase acicular platelets while the mesh and foam structures were characterized by alpha'-martensite with some residual alpha. The Co-29Cr-6Mo containing 0.22% C formed columnar (directional) Cr23C6 carbides spaced similar to 2 mu m in the build direction, while HIP-annealed Co-Cr alloy exhibited an intrinsic stacking fault microstructure. A log-log plot of relative stiffness versus relative density for Ti-6Al-4V and Co-29Cr-6Mo open-cellular mesh and foams resulted in a fitted line with a nearly ideal slope, n = 2.1. A stress shielding design graph constructed from these data permitted mesh and foam implant prototypes to be fabricated for compatible bone stiffness. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1396 / 1411
页数:16
相关论文
共 33 条
[1]  
[Anonymous], ACTA MAT
[2]  
ASHBY M. F., 2000, Metal Foams: A Design Guide
[3]   Metal foams: A survey [J].
Ashby, MF ;
Lu, TJ .
SCIENCE IN CHINA SERIES B-CHEMISTRY, 2003, 46 (06) :521-532
[4]   THE EFFECT OF PROXIMALLY AND FULLY POROUS-COATED CANINE HIP STEM DESIGN ON BONE MODELING [J].
BOBYN, JD ;
PILLIAR, RM ;
BINNINGTON, AG ;
SZIVEK, JA .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1987, 5 (03) :393-408
[5]  
Chalmers B., 1970, Principles of solidification
[6]  
Chuna C.K., 2003, Rapid Prototyping: Principles and Applications, V2nd
[7]   Processing of titanium foams [J].
Dunand, DC .
ADVANCED ENGINEERING MATERIALS, 2004, 6 (06) :369-376
[8]   Cellular materials as porous scaffolds for tissue engineering [J].
Freyman, TM ;
Yannas, IV ;
Gibson, LJ .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (3-4) :273-282
[9]   Comparison of Microstructures and Mechanical Properties for Solid and Mesh Cobalt-Base Alloy Prototypes Fabricated by Electron Beam Melting [J].
Gaytan, S. M. ;
Murr, L. E. ;
Martinez, E. ;
Martinez, J. L. ;
Machado, B. I. ;
Ramirez, D. A. ;
Medina, F. ;
Collins, S. ;
Wicker, R. B. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (12) :3216-3227
[10]  
Gibson L. J., 1997, CELLULAR SOLIDS STRU, V2nd ed