Effects of Phase Change and Cu Doping on the Li Storage Properties of Rutile TiO2

被引:12
作者
Usui, Hiroyuki [1 ,3 ]
Domi, Yasuhiro [1 ,3 ]
Nguyen, Thi Hay [2 ,3 ]
Izaki, Shin-ichiro [2 ,3 ]
Nishikawa, Kei [4 ]
Tanaka, Toshiyuki [5 ]
Sakaguchi, Hiroki [1 ,3 ]
机构
[1] Tottori Univ, Grad Sch Engn, Dept Chem & Biotechnol, 4-101 Minami,Koyama Cho, Tottori 6808552, Japan
[2] Tottori Univ, Grad Sch Sustainabil Sci, Dept Engn, Course Chem & Biotechnol, 4-101 Minami,Koyama Cho, Tottori 6808552, Japan
[3] Tottori Univ, Ctr Res Green Sustainable Chem, 4-101 Minami,Koyama Cho, Tottori 6808552, Japan
[4] Natl Inst Mat Sci NIMS, Ctr Green Res Energy & Environm Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] Tottori Inst Ind Technol, Mech & Mat Res Lab, 1247 Kusaka, Yonago, Tottori 6893522, Japan
基金
日本学术振兴会;
关键词
Rutile TiO2; Layered Rock-salt LixTiO2; Cu Doping; Li-ion Battery Anode; LITHIUM INSERTION; AEROSOL DEPOSITION; ROOM-TEMPERATURE; ANODE; IMPACT; PERFORMANCE;
D O I
10.5796/electrochemistry.22-00004
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The crystal structure and Li storage properties of Cu-doped rutile TiO2 after a phase change caused by lithiation were investigated for the first time. Structural analysis results confirmed that undoped rutile TiO2 was transformed to a distorted layered rock-salt LixTiO2 structure with a small volume expansion of only 1% when cycled in a potential range of 1.0-3.0 V vs. Li+/Li. A substitutional solid solution of Cu2+ was formed in layered LixTiO2. The Cu doping increased both the interlayer distance and electronic conductivity of the layered LixTiO2. As an Li-ion battery anode, a Cu-doped TiO2 electrode exhibited a long cycle life, maintaining a reversible capacity of 120 mAh g(-1) over 10000 cycles at 5C and an excellent rate capability of 108mAh g(-1) at 50C. Furthermore, this electrode could also be potentially used as a Na storage material. These attractive properties demonstrate high applicability of Cu-doped rutile TiO2 as a novel anode material. (C) The Author(s) 2022. Published by ECSJ.
引用
收藏
页数:9
相关论文
共 36 条
  • [1] Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices
    Akedo, Jun
    [J]. JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2008, 17 (02) : 181 - 198
  • [2] Aerosol deposition of ceramic thick films at room temperature: Densification mechanism of ceramic layers
    Akedo, Jun
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (06) : 1834 - 1839
  • [3] TiO2 polymorphs in 'rocking-chair' Li-ion batteries
    Aravindan, Vanchiappan
    Lee, Yun-Sung
    Yazami, Rachid
    Madhavi, Srinivasan
    [J]. MATERIALS TODAY, 2015, 18 (06) : 345 - 351
  • [4] Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature
    Baudrin, E.
    Cassaignon, S.
    Koesch, M.
    Jolivet, J. -P.
    Dupont, L.
    Tarascon, J. -M.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) : 337 - 342
  • [5] TiO2(B) Nanoribbons As Negative Electrode Material for Lithium Ion Batteries with High Rate Performance
    Beuvier, Thomas
    Richard-Plouet, Mireille
    Mancini-Le Granvalet, Maryline
    Brousse, Thierry
    Crosnier, Olivier
    Brohan, Luc
    [J]. INORGANIC CHEMISTRY, 2010, 49 (18) : 8457 - 8464
  • [6] Impact of nanosizing on lithiated rutile TiO2
    Borghols, Wouter J. H.
    Wagemaker, Marnix
    Lafont, Ugo
    Kelder, Erik M.
    Mulder, Fokko M.
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (09) : 2949 - 2955
  • [7] Ti3+ Self-Doped Dark Rutile TiO2 Ultrafine Nanorods with Durable High-Rate Capability for Lithium-Ion Batteries
    Chen, Jun
    Song, Weixin
    Hou, Hongshuai
    Zhang, Yan
    Jing, Mingjun
    Jia, Xinnan
    Ji, Xiaobo
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (43) : 6793 - 6801
  • [8] Order-disorder transition in nano-rutile TiO2 anodes: a high capacity low-volume change Li-ion battery material
    Christensen, Christian Kolle
    Mamakhel, Mohammad Aref Hasen
    Balakrishna, Ananya Renuka
    Iversen, Bo Brummerstedt
    Chiang, Yet-Ming
    Ravnsbaek, Dorthe Bomholdt
    [J]. NANOSCALE, 2019, 11 (25) : 12347 - 12357
  • [9] Combining the Pair Distribution Function and Computational Methods To Understand Lithium Insertion in Brookite (TiO2)
    Dambournet, Damien
    Chapman, Karena W.
    Koudriachova, Marina V.
    Chupas, Peter J.
    Belharouak, Ilias
    Amine, Khalil
    [J]. INORGANIC CHEMISTRY, 2011, 50 (13) : 5855 - 5857
  • [10] Understanding the high performance of nanosized rutile TiO2 anode for lithium-ion batteries
    Diaz-Carrasco, Pilar
    Duarte-Cardenas, Angelica
    Kuhn, Alois
    Garcia-Alvarado, Flaviano
    [J]. JOURNAL OF POWER SOURCES, 2021, 515