Birkhoff's polytope and unistochastic matrices, N=3 and N=4

被引:51
作者
Bengtsson, I [1 ]
Ericsson, Å
Kus, M
Tadej, W
Zyczkowski, K
机构
[1] Univ Stockholm, AlbaNova, S-10691 Stockholm, Sweden
[2] Polish Acad Sci, Cent Fizyki Teoret, PL-02668 Warsaw, Poland
[3] Cardinal Stefan Wyszynski Univ, Warsaw, Poland
[4] Jagiellonian Univ, Inst Fizyki Smoluchowskiego, PL-30059 Krakow, Poland
关键词
D O I
10.1007/s00220-005-1392-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The set of bistochastic or doubly stochastic N x N matrices is a convex set called Birkhoff's polytope, which we describe in some detail. Our problem is to characterize the set of unistochastic matrices as a subset of Birkhoff's polytope. For N=3 we present fairly complete results. For N=4 partial results are obtained. An interesting difference between the two cases is that there is a ball of unistochastic matrices around the van der Waerden matrix for N=3, while this is not the case for N=4.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 31 条
[1]   ON THE RECONSTRUCTION OF A UNITARY MATRIX FROM ITS MODULI [J].
AUBERSON, G ;
MARTIN, A ;
MENNESSIER, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 140 (03) :523-542
[2]   PERMUTATION MATRICES WHOSE CONVEX COMBINATIONS ARE ORTHOSTOCHASTIC [J].
AUYEUNG, YH ;
CHENG, CM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 150 :243-253
[3]   3X3 ORTHOSTOCHASTIC MATRICES AND THE CONVEXITY OF GENERALIZED NUMERICAL RANGES [J].
AUYEUNG, YH ;
POON, YT .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 27 (OCT) :69-79
[4]  
BECK M, ARXIVMATHCO0305322
[5]  
Birkhoff G., 1946, Revista Facultad de Ciencias Exactas, Puras y Applicadas Universidad Nacional de Tucuman, Serie A, V5, P147
[6]   CONVEX POLYHEDRA OF DOUBLY STOCHASTIC MATRICES .1. APPLICATIONS OF PERMANENT FUNCTION [J].
BRUALDI, RA ;
GIBSON, PM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (02) :194-230
[7]   Some results on the parametrization of complex Hadamard matrices [J].
Dita, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (20) :5355-5374
[8]   Entropy and Hadamard matrices [J].
Gadiyar, HG ;
Maini, KMS ;
Padma, R ;
Sharatchandra, HS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :L109-L112
[9]  
Haagerup U., 1997, OPERATOR ALGEBRAS QU
[10]  
Hadamard J., 1893, Bull. Sci. Math., V2, P240