Periodic solutions of singular first-order Hamiltonian systems of N-vortex type

被引:7
作者
Bartsch, Thomas [1 ]
机构
[1] Univ Giessen, Math Inst, Arndtstr 2, D-35392 Giessen, Germany
关键词
N-vortex dynamics; Singular first order Hamiltonian systems; Periodic solutions; BOUNDED PLANAR DOMAINS; CRITICAL-POINTS; EQUATIONS; EQUILIBRIA;
D O I
10.1007/s00013-016-0928-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with the dynamics of N point vortices z(1), ..., z(N) is an element of Omega subset of R-2 in a planar domain. This is described by a Hamiltonian system Gamma(k)(z)over dot(k)(t) = J del(zk) H(z(t)), k = 1, ..., N, where Gamma(1), ..., Gamma(N) is an element of R \ {0} are the vorticities, J is an element of R-2x2 is the standard symplectic 2 x 2 matrix, and the Hamiltonian H is of N-vortex type: H(z1, ..., zN) = -1/2 pi Sigma(N)(j,k=1j not equal k) Gamma(j)Gamma(k) log vertical bar z(j) - z(k)vertical bar - Sigma(N)(j,k=1) Gamma(j)Gamma(k)g(z(j), z(k)). Here g : Omega x Omega -> R is an arbitrary symmetric function of class C-2, e.g., the regular part of a hydrodynamic Green function. Given a non-degenerate critical point a(0) is an element of Omega of h(z) = g(z, z) and a non-degenerate relative equilibrium Z(t) is an element of R-2N of the Hamiltonian system in the plane with g = 0, we prove the existence of a smooth path of periodic solutions z((r))(t) = (z(1)((r))(t), ..., z(N)((r))(t)) is an element of Omega(N), 0 < r < r(0), with z(k)((r))(t) -> a(0) as r -> 0. In the limit r -> 0, and after a suitable rescaling, the solutions look like Z(t).
引用
收藏
页码:413 / 422
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 1994, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-4284-0
[2]   Vortex crystals [J].
Aref, H ;
Newton, PK ;
Stremler, MA ;
Tokieda, T ;
Vainchtein, DL .
ADVANCES IN APPLIED MECHANICS, VOL 39, 2003, 39 :1-79
[3]  
Bartsch T., ARXIV160401576
[4]   Periodic solutions of the N-vortex Hamiltonian system in planar domains [J].
Bartsch, Thomas ;
Dai, Qianhui .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) :2275-2295
[5]   CRITICAL POINTS OF THE N-VORTEX HAMILTONIAN IN BOUNDED PLANAR DOMAINS AND STEADY STATE SOLUTIONS OF THE INCOMPRESSIBLE EULER EQUATIONS [J].
Bartsch, Thomas ;
Pistoia, Angela .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (02) :726-744
[6]   N-Vortex Equilibria for Ideal Fluids in Bounded Planar Domains and New Nodal Solutions of the sinh-Poisson and the Lane-Emden-Fowler Equations [J].
Bartsch, Thomas ;
Pistoia, Angela ;
Weth, Tobias .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (03) :653-686
[7]  
Bethuel F., 1994, Progress in Nonlinear Differential Equations and Their Applications, V13
[8]   CONVEXITY OF SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (02) :431-456
[9]   The fixed energy problem for a class of nonconvex singular Hamiltonian systems [J].
Carminati, C. ;
Sere, E. ;
Tanaka, K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (01) :362-377
[10]   Vortex dynamics for the Ginzburg-Landau-Schrodinger equation [J].
Colliander, JE ;
Jerrard, RL .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (07) :333-358