Mean-square integral and differential of fuzzy stochastic processes

被引:34
作者
Feng, YH [1 ]
机构
[1] China Text Univ, Dept Basic Sci, Shanghai 200051, Peoples R China
关键词
fuzzy stochastic process; mean-square integral and differential; Gaussian process;
D O I
10.1016/S0165-0114(97)00119-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper defines the concepts of integral and differential in mean-square associated with a class of fuzzy stochastic processes and studies their integrability and differentiability properties. The definition and the mean-square calculus properties of a Gaussian fuzzy stochastic process are also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:271 / 280
页数:10
相关论文
共 11 条
[1]  
DING GG, 1984, INTRO BANACH SPACES
[2]  
FENG Y, IN PRESS FUZZY SETS
[3]   ELEMENTARY FUZZY CALCULUS [J].
GOETSCHEL, R ;
VOXMAN, W .
FUZZY SETS AND SYSTEMS, 1986, 18 (01) :31-43
[4]   ON THE CONVERGENCE OF FUZZY-SETS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1985, 17 (01) :53-65
[5]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317
[6]   LIMIT-THEOREMS FOR FUZZY RANDOM-VARIABLES [J].
KLEMENT, EP ;
PURI, ML ;
RALESCU, DA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832) :171-182
[7]  
Loeve M., 1977, Graduate Texts in Mathematics
[8]   ON EMBEDDING PROBLEMS OF FUZZY NUMBER SPACE .5. [J].
MING, M .
FUZZY SETS AND SYSTEMS, 1993, 55 (03) :313-318
[9]   CONVERGENCE THEOREM FOR FUZZY MARTINGALES [J].
PURI, ML ;
RALESCU, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 160 (01) :107-122
[10]   FUZZY RANDOM-VARIABLES [J].
PURI, ML ;
RALESCU, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (02) :409-422