p-adic L-functions and Euler systems: a tale in two trilogies

被引:0
作者
Bertolini, Massimo [1 ]
Castella, Francesc [2 ]
Darmon, Henri [3 ]
Dasgupta, Samit [4 ]
Prasanna, Kartik [5 ]
Rotger, Victor [6 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[4] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[5] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[6] Univ Politecn Cataluna, Math Aplicada 2, ES-08034 Barcelona, Spain
来源
AUTOMORPHIC FORMS AND GALOIS REPRESENTATIONS, VOL 1 | 2014年 / 414卷
关键词
TRIPLE PRODUCT; HEEGNER POINTS; ZETA-FUNCTIONS; SYNTOMIC REGULATORS; EISENSTEIN SERIES; SPECIAL VALUES; DERIVATIVES; CYCLES; BIRCH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This chapter surveys six different special value formulae for p-adic L-functions, stressing their common features and their eventual arithmetic applications via Kolyvagin's theory of "Euler systems", in the spirit of Coates-Wiles and Kato-Perrin-Riou.
引用
收藏
页码:52 / 101
页数:50
相关论文
共 51 条
[1]  
[Anonymous], 1986, Contemporary Mathematics.
[2]  
[Anonymous], 1993, ELEMENTARY THEORY L
[3]  
Bannai K, 2010, AM J MATH, V132, P1609
[4]  
Beilinson A., 1984, Current problems in mathematics, V24, P181
[5]  
Bertolini M., KATOS EULER SY UNPUB
[6]  
Bertolini M., BEILINSON FLAC UNPUB
[7]   GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES [J].
Bertolini, Massimo ;
Darmon, Henri ;
Prasanna, Kartik .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1033-1148
[8]   A generalization of Coleman's p-adic integration theory [J].
Besser, A .
INVENTIONES MATHEMATICAE, 2000, 142 (02) :397-434
[9]   Syntomic regulators and p-adic integration I:: Rigid syntomic regulators [J].
Besser, A .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) :291-334
[10]   Syntomic regulators and p-adic integration II:: K2 of curves [J].
Besser, A .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) :335-359